9,220 research outputs found
Computer program simulates design, test, and analysis phases of sensitivity experiments
Modular program with a small main program and several specialized subroutines provides a general purpose computer program to simulate the design, test and analysis phases of sensitivity experiments. This program allows a wide range of design-response function combinations and the addition, deletion, or modification of subroutines
"Quantum Interference with Slits" Revisited
Marcella [arXiv:quant-ph/0703126] has presented a straightforward technique
employing the Dirac formalism to calculate single- and double-slit interference
patterns. He claims that no reference is made to classical optics or scattering
theory and that his method therefore provides a purely quantum mechanical
description of these experiments. He also presents his calculation as if no
approximations are employed. We show that he implicitly makes the same
approximations found in classical treatments of interference and that no new
physics has been introduced. At the same time, some of the quantum mechanical
arguments Marcella gives are, at best, misleading.Comment: 11 pages, 3 figure
Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media
The behaviour of two dimensional binary and ternary amphiphilic fluids under
flow conditions is investigated using a hydrodynamic lattice gas model. After
the validation of the model in simple cases (Poiseuille flow, Darcy's law for
single component fluids), attention is focussed on the properties of binary
immiscible fluids in porous media. An extension of Darcy's law which explicitly
admits a viscous coupling between the fluids is verified, and evidence of
capillary effects are described. The influence of a third component, namely
surfactant, is studied in the same context. Invasion simulations have also been
performed. The effect of the applied force on the invasion process is reported.
As the forcing level increases, the invasion process becomes faster and the
residual oil saturation decreases. The introduction of surfactant in the
invading phase during imbibition produces new phenomena, including
emulsification and micellisation. At very low fluid forcing levels, this leads
to the production of a low-resistance gel, which then slows down the progress
of the invading fluid. At long times (beyond the water percolation threshold),
the concentration of remaining oil within the porous medium is lowered by the
action of surfactant, thus enhancing oil recovery. On the other hand, the
introduction of surfactant in the invading phase during drainage simulations
slows down the invasion process -- the invading fluid takes a more tortuous
path to invade the porous medium -- and reduces the oil recovery (the residual
oil saturation increases).Comment: 48 pages, 26 figures. Phys. Rev. E (in press
Instability of Extremal Relativistic Charged Spheres
With the question, ``Can relativistic charged spheres form extremal black
holes?" in mind, we investigate the properties of such spheres from a classical
point of view. The investigation is carried out numerically by integrating the
Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding
interior Reissner-Nordstr\"om solutions for these objects. We consider both
constant density and adiabatic equations of state, as well as several possible
charge distributions, and examine stability by both a normal mode and an energy
analysis. In all cases, the stability limit for these spheres lies between the
extremal () limit and the black hole limit (). That is, we find
that charged spheres undergo gravitational collapse before they reach ,
suggesting that extremal Reissner-Nordtr\"om black holes produced by collapse
are ruled out. A general proof of this statement would support a strong form of
the cosmic censorship hypothesis, excluding not only stable naked
singularities, but stable extremal black holes. The numerical results also
indicate that although the interior mass-energy obeys the usual stability limit for the Schwarzschild interior solution, the gravitational
mass does not. Indeed, the stability limit approaches as .
In the Appendix we also argue that Hawking radiation will not lead to an
extremal Reissner-Nordstr\"om black hole. All our results are consistent with
the third law of black hole dynamics, as currently understood
Best Practices in Second Stage Labor Care: Maternal Bearing Down and Positioning
Despite evidence of adverse fetal and maternal outcomes from the use of sustained Valsalva bearing down efforts, current second-stage care practices are still characterized by uniform directions to “push” forcefully upon complete dilatation of the cervix while the woman is in a supine position. Directed pushing might slightly shorten the duration of second stage labor, but can also contribute to deoxygenation of the fetus; cause damage to urinary, pelvic, and perineal structures; and challenge a woman’s confidence in her body. Research on the second stage of labor care is reviewed, with a focus on recent literature on maternal bearing down efforts, the “laboring down” approach to care, second-stage duration, and maternal position. Clinicians can apply the scientific evidence regarding the detrimental effects of sustained Valsalva bearing down efforts and supine positioning by individualizing second stage labor care and supporting women’s involuntary bearing down sensations that can serve to guide her behaviors
Far Infrared and Submillimeter Emission from Galactic and Extragalactic Photo-Dissociation Regions
Photodissociation Region (PDR) models are computed over a wide range of
physical conditions, from those appropriate to giant molecular clouds
illuminated by the interstellar radiation field to the conditions experienced
by circumstellar disks very close to hot massive stars. These models use the
most up-to-date values of atomic and molecular data, the most current chemical
rate coefficients, and the newest grain photoelectric heating rates which
include treatments of small grains and large molecules. In addition, we examine
the effects of metallicity and cloud extinction on the predicted line
intensities. Results are presented for PDR models with densities over the range
n=10^1-10^7 cm^-3 and for incident far-ultraviolet radiation fields over the
range G_0=10^-0.5-10^6.5, for metallicities Z=1 and 0.1 times the local
Galactic value, and for a range of PDR cloud sizes. We present line strength
and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158
micron, [O I] 63 and 145 micron, [C I] 370 and 609 micron, CO J=1-0, J=2-1,
J=3-2, J=6-5 and J=15-14, as well as the strength of the far-infrared
continuum. These plots will be useful for the interpretation of Galactic and
extragalactic far infrared and submillimeter spectra observable with ISO,
SOFIA, SWAS, FIRST and other orbital and suborbital platforms. As examples, we
apply our results to ISO and ground based observations of M82, NGC 278, and the
Large Magellenic Cloud.Comment: 54 pages, 20 figures, accepted for publication in The Astrophysical
Journa
Simulating Three-Dimensional Hydrodynamics on a Cellular-Automata Machine
We demonstrate how three-dimensional fluid flow simulations can be carried
out on the Cellular Automata Machine 8 (CAM-8), a special-purpose computer for
cellular-automata computations. The principal algorithmic innovation is the use
of a lattice-gas model with a 16-bit collision operator that is specially
adapted to the machine architecture. It is shown how the collision rules can be
optimized to obtain a low viscosity of the fluid. Predictions of the viscosity
based on a Boltzmann approximation agree well with measurements of the
viscosity made on CAM-8. Several test simulations of flows in simple geometries
-- channels, pipes, and a cubic array of spheres -- are carried out.
Measurements of average flux in these geometries compare well with theoretical
predictions.Comment: 19 pages, REVTeX and epsf macros require
Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media
We report the results of a study of multiphase flow in porous media. A
Darcy's law for steady multiphase flow was investigated for both binary and
ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager
reciprocity were shown to be a good approximation of the simulation data. The
dependence of the relative permeability coefficients on water saturation was
investigated and showed good qualitative agreement with experimental data.
Non-steady state invasion flows were investigated, with particular interest in
the asymptotic residual oil saturation. The addition of surfactant to the
invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.
Interface Roughening in a Hydrodynamic Lattice-Gas Model with Surfactant
Using a hydrodynamic lattice-gas model, we study interface growth in a binary
fluid with various concentrations of surfactant. We find that the interface is
smoothed by small concentrations of surfactant, while microemulsion droplets
form for large surfactant concentrations. To assist in determining the
stability limits of the interface, we calculate the change in the roughness and
growth exponents and as a function of surfactant concentration
along the interface.Comment: 4 pages with 4 embedded ps figures. Requires psfig.tex. Will appear
in PRL 14 Oct 199
Spurious diffusion in particle simulations of the Kolmogorov flow
Particle simulations of the Kolmogorov flow are analyzed by the
Landau-Lifshitz fluctuating hydrodynamics. It is shown that a spurious
diffusion of the center of mass corrupts the statistical properties of the
flow. The analytical expression for the corresponding diffusion coefficient is
derived.Comment: 10 pages, no figure
- …
