184 research outputs found

    Role of THBS1, WHSC1, ADAMTS1 and RBFOX2 genes in the radiation-induced Dna double strand break repair in Hela tumor cell line

    Get PDF
    It is well known that inter-individual differences of radiosensitivity have genetic causes, such as variations in the level of DNA or expression of DNA repair genes. However, differentially expressed genes which could lead to inter-individual differences in the level of DNA damage remain largely unidentified. In our study we have induced knock-out of THBS1, WHSC1, ADAMTS1 and RBFOX2 genes in HeLa cell line to clarify the effects of these genes on DNA repair and radiosensitivity

    Interdisciplinary evidence-based recommendations for the follow-up of testicular cancer patients: a joint effort

    Get PDF
    Detailed recommendations for the treatment of testicular cancer exist and due to the stringent application of the standard therapies, most patients can nowadays be cured. Moreover in the treatment of early stage disease, active surveillance is now a cornerstone of treatment. Hence there is a clear need for recommendations regarding the long term follow-up of these young patients. These have to be safe, feasible and the intensity of procedures have to reflect the known risk of recurrence. Different proposals have been published but they differ widely especially in terms of frequency and modality of imaging. In the last few years, new evidence has become available regarding the relapse pattern of different disease stages of testicular cancer, the use of imaging in follow-up and the risks of excessive radiation due to imaging, in particular with CT scans. In this article, an interdisciplinary, multinational working group has reviewed the evidence and based on this has formulated practical recommendations for the follow-up of patients with testicular cancer

    Impact of differing methodologies for serum miRNA-371a-3p assessment in stage I testicular germ cell cancer recurrence

    Full text link
    INTRODUCTION Current evidence shows that serum miR-371a-3p can identify disease recurrence in testicular germ cell tumour (TGCT) patients and correlates with tumour load. Despite convincing evidence showing the advantages of including miR-371a-3p testing to complement and overcome the classical serum tumour markers limitations, the successful introduction of a serum miRNA based test into clinical practice has been impeded by a lack of consensus regarding optimal methodologies and lack of a universal protocol and thresholds. Herein, we investigate two quantitative real-time PCR (qRT-PCR) based pipelines in detecting disease recurrence in stage I TGCT patients under active surveillance, and compare the sensitivity and specificity for each method. METHODS Sequential serum samples collected from 33 stage I TGCT patients undergoing active surveillance were analysed for miR-371a-3p via qRT-PCR with and without an amplification step included. RESULTS Using a pre-amplified protocol, all known recurrences were detected via elevated miR-371a-3p expression, while without pre-amplification, we failed to detect recurrence in 3/10 known recurrence patients. For pre-amplified analysis, sensitivity and specificity was 90% and 94.4% respectively. Without amplification, sensitivity dropped to 60%, but exhibited 100% specificity. DISCUSSION We conclude that incorporating pre-amplification increases sensitivity of miR-371a-3p detection, but produces more false positive results. The ideal protocol for quantification of miR-371a-3p still needs to be determined. TGCT patients undergoing active surveillance may benefit from serum miR-371a-3p quantification with earlier detection of recurrences compared to current standard methods. However, larger cross-institutional studies where samples are processed and data is analysed in a standardised manner are required prior to its routine clinical implementation

    Impact of differing methodologies for serum miRNA-371a-3p assessment in stage I testicular germ cell cancer recurrence.

    Get PDF
    INTRODUCTION Current evidence shows that serum miR-371a-3p can identify disease recurrence in testicular germ cell tumour (TGCT) patients and correlates with tumour load. Despite convincing evidence showing the advantages of including miR-371a-3p testing to complement and overcome the classical serum tumour markers limitations, the successful introduction of a serum miRNA based test into clinical practice has been impeded by a lack of consensus regarding optimal methodologies and lack of a universal protocol and thresholds. Herein, we investigate two quantitative real-time PCR (qRT-PCR) based pipelines in detecting disease recurrence in stage I TGCT patients under active surveillance, and compare the sensitivity and specificity for each method. METHODS Sequential serum samples collected from 33 stage I TGCT patients undergoing active surveillance were analysed for miR-371a-3p via qRT-PCR with and without an amplification step included. RESULTS Using a pre-amplified protocol, all known recurrences were detected via elevated miR-371a-3p expression, while without pre-amplification, we failed to detect recurrence in 3/10 known recurrence patients. For pre-amplified analysis, sensitivity and specificity was 90% and 94.4% respectively. Without amplification, sensitivity dropped to 60%, but exhibited 100% specificity. DISCUSSION We conclude that incorporating pre-amplification increases sensitivity of miR-371a-3p detection, but produces more false positive results. The ideal protocol for quantification of miR-371a-3p still needs to be determined. TGCT patients undergoing active surveillance may benefit from serum miR-371a-3p quantification with earlier detection of recurrences compared to current standard methods. However, larger cross-institutional studies where samples are processed and data is analysed in a standardised manner are required prior to its routine clinical implementation

    Seasonal changes in patterns of gene expression in avian song control brain regions.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity

    Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The exact cause of schizophrenia is not known, although several aetiological theories have been proposed for the disease, including developmental or neurodegenerative processes, neurotransmitter abnormalities, viral infection and immune dysfunction or autoimmune mechanisms. Growing evidence suggests that specific cytokines and chemokines play a role in signalling the brain to produce neurochemical, neuroendocrine, neuroimmune and behavioural changes. A relationship between inflammation and schizophrenia was supported by abnormal cytokines production, abnormal concentrations of cytokines and cytokine receptors in the blood and cerebrospinal fluid in schizophrenia. Since the neuropathology of schizophrenia has recently been reported to be closely associated with microglial activation we aimed to determined whether spontaneous or LPS-induced peripheral blood mononuclear cell chemokines and cytokines production is dysregulated in schizophrenic patients compared to healthy subjects. We enrolled 51 untreated first-episode schizophrenics (SC) and 40 healthy subjects (HC) and the levels of MCP-1, MIP-1α, IL-8, IL-18, IFN-γ and RANTES were determined by Elisa method in cell-free supernatants of PBMC cultures.</p> <p>Results</p> <p>In the simultaneous quantification we found significantly higher levels of constitutively and LPS-induced MCP-1, MIP-1α, IL-8 and IL-18, and lower RANTES and IFNγ levels released by PBMC of SC patients compared with HC. In ten SC patients receiving therapy with risperidone, olanzapine or clozapine basal and LPS-induced production of RANTES and IL-18 was increased, while both basal and LPS-induced MCP-1 production was decreased. No statistically significant differences were detected in serum levels after therapy.</p> <p>Conclusion</p> <p>The observation that in schizophrenic patients the PBMC production of selected chemo-cytokines is dysregulated reinforces the hypothesis that the peripheral cyto-chemokine network is involved in the pathophysiology of schizophrenia. These preliminary, but promising data are supportive of the application of wider profiling approaches to the identification of biomarker as diagnostic tools for the analysis of psychiatric diseases.</p

    A Novel Microwave Sensor to Detect Specific Biomarkers in Human Cerebrospinal Fluid and Their Relationship to Cellular Ischemia During Thoracoabdominal Aortic Aneurysm Repair

    Get PDF
    Thoraco-abdominal aneurysms (TAAA) represents a particularly lethal vascular disease that without surgical repair carries a dismal prognosis. However, there is an inherent risk from surgical repair of spinal cord ischaemia that can result in paraplegia. One method of reducing this risk is cerebrospinal fluid (CSF) drainage. We believe that the CSF contains clinically significant biomarkers that can indicate impending spinal cord ischaemia. This work therefore presents a novel measurement method for proteins, namely albumin, as a precursor to further work in this area. The work uses an interdigitated electrode (IDE) sensor and shows that it is capable of detecting various concentrations of albumin (from 0 to 100 g/L) with a high degree of repeatability at 200 MHz (R2 = 0.991) and 4 GHz (R2 = 0.975)

    Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Innate immune inflammatory response is suggested to have a role in the pathogenesis of major depressive disorder (MDD). Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20, and IL-24 are all implicated in the inflammatory processes and polymorphisms in respective genes have been associated with various immunopathological conditions. This study was carried out to investigate whether single-nucleotide polymorphisms (SNPs) in these genes are also associated with MDD.</p> <p>Methods</p> <p>Case-control association study was performed with seven SNPs from the <it>IL10 </it>gene cluster. 153 patients with MDD and 277 healthy control individuals were recruited.</p> <p>Results</p> <p>None of the selected SNPs were individually associated with MDD. The linkage disequilibrium (LD) analysis indicated the existence of two recombination sites in the <it>IL10 </it>gene cluster, thus confirming the formerly established LD pattern of this genomic region. This also created two haplotype blocks, both consisting of three SNPs. Additionally, the haplotype analysis detected a significantly higher frequency of block 2 (<it>IL20 </it>and <it>IL24 </it>genes) haplotype TGC in the patients group compared to healthy control individuals (P = 0.0097).</p> <p>Conclusion</p> <p>Our study established increased risk for MDD related to the <it>IL20 </it>and <it>IL24 </it>haplotype and suggests that cytokines may contribute to the pathogenesis of MDD. Since none of the block 2 SNPs were individually associated with MDD, it is possible that other polymorphisms linked to them contribute to the disease susceptibility. Future studies are needed to confirm the results and to find the possible functional explanation.</p

    A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100B is a calcium-binding protein that is produced primarily by astrocytes. Increased serum S100B protein levels reflect neurological damage. Autoimmunity may have a role in the pathogenesis of autism in some patients. Autoantibodies may cross the blood-brain barrier and combine with brain tissue antigens, forming immune complexes and resulting in neurological damage. We are the first to investigate the relationship between serum levels of S100B protein, a marker of neuronal damage, and antiribosomal P protein antibodies in autistic children.</p> <p>Methods</p> <p>Serum S100B protein and antiribosomal P antibodies were measured in 64 autistic children in comparison to 46 matched healthy children.</p> <p>Results</p> <p>Autistic children had significantly higher serum S100B protein levels than healthy controls (<it>P </it>< 0.001). Children with severe autism had significantly higher serum S100B protein than patients with mild to moderate autism (<it>P </it>= 0.01). Increased serum levels of antiribosomal P antibodies were found in 40.6% of autistic children. There were no significant correlations between serum levels of S100B protein and antiribosomal P antibodies (<it>P </it>= 0.29).</p> <p>Conclusions</p> <p>S100B protein levels were elevated in autistic children and significantly correlated to autistic severity. This may indicate the presence of an underlying neuropathological condition in autistic patients. Antiribosomal P antibodies may not be a possible contributing factor to the elevated serum levels of S100B protein in some autistic children. However, further research is warranted to investigate the possible link between serum S100B protein levels and other autoantibodies, which are possible indicators of autoimmunity to central nervous system in autism.</p
    corecore