6,565 research outputs found

    Fermionic Coset Models as Topological Models

    Get PDF
    By considering the fermionic realization of G/HG/H coset models, we show that the partition function for the U(1)/U(1)U(1)/U(1) model defines a Topological Quantum Field Theory and coincides with that for a 2-dimensional Abelian BF system. In the non-Abelian case, we prove the topological character of G/GG/G coset models by explicit computation, also finding a natural extension of 2-dimensional BF systems with non-Abelian symmetry.Comment: 14p

    Non-Abelian fractional quantum Hall states and chiral coset conformal field theories

    Full text link
    We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern-Simons (CS) actions. Our approach exploits the connection between the topological Chern-Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.Comment: Revised manuscript, 17 pages; new section discusses parafermion state

    Spin-phonon induced magnetic order in Kagome ice

    Get PDF
    We study the effects of lattice deformations on the Kagome spin ice, with Ising spins coupled by nearest neighbor exchange and long range dipolar interactions, in the presence of in-plane magnetic fields. We describe the lattice energy according to the Einstein model, where each site distortion is treated independently. Upon integration of lattice degrees of freedom, effective quadratic spin interactions arise. Classical MonteCarlo simulations are performed on the resulting model, retaining up to third neighbor interactions, under different directions of the magnetic field. We find that, as the effect of the deformation is increased, a rich plateau structure appears in the magnetization curves.Comment: 7 pages, 8 figure

    Bound states in weakly disordered spin ladders

    Full text link
    We study the appearance of bound states in the spin gap of spin-1/2 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a finite concentration of impurities is treated with the coherent-potential approximation in the strong-coupling limit and compared with numerical results. Furthermore, we analyze the details in the structure of the density of states and relate their origin to the influence of impurity clusters.Comment: 2 pages, 1 figure. Proceedings of SCES'04, to appear in Physica

    Application of 2D shape analysis to study Epigravettian lithic assemblages: assessing its analytical potential

    Get PDF
    In this paper, we apply a two-dimensional (2D) Geometric morphometric analysis to a sample of Epigravettian lithic artefacts with the aim of assessing the potential of such an approach to study Epigravettian lithic assemblages. The lithic sample comes from layer 9c2 (Evolved Epigravettian, Upper Palaeolithic, about 18,000-19,000 years ago) of Grotta Paglicci (Apulia, southern Italy). After extracting the outline coordinates from high-resolution images using the software DiaOutline, we conduct Elliptic Fourier Analysis, Principal Component Analysis, and Linear Discriminant Analysis in the R package Momocs to investigate the internal variability of the sample. Shape analysis confirms that 1) the production of microbladelets was not linked to a dedicated reduction sequence and 2) the modification of blanks into backed points followed a rather standardised stone tool design. The result opens interesting perspectives for the routine implementation of 2D shape analyses complementary to the classical technological ones

    Resonances in a dilute gas of magnons and metamagnetism of isotropic frustrated ferromagnetic spin chains

    Full text link
    We show that spin-S chains with SU(2)-symmetric, ferromagnetic nearest-neighbor and frustrating antiferromagnetic next-nearest-neighbor exchange interactions exhibit metamagnetic behavior under the influence of an external magnetic field for small S, in the form of a first-order transition to the fully polarized state. The corresponding magnetization jump increases gradually starting from an S-dependent critical value of exchange couplings and takes a maximum in the vicinity of a ferromagnetic Lifshitz point. The metamagnetism results from resonances in the dilute magnon gas caused by an interplay between quantum fluctuations and frustration.Comment: 12 pages RevTex4, 9 eps figures: Extended version, to appear in Phys. Rev.

    Bond-impurity induced bound states in disordered spin-1/2 ladders

    Get PDF
    We discuss the effect of weak bond-disorder in two-leg spin ladders on the dispersion relation of the elementary triplet excitations with a particular focus on the appearance of bound states in the spin gap. Both the cases of modified exchange couplings on the rungs and the legs of the ladder are analyzed. Based on a projection on the single-triplet subspace, the single-impurity and small cluster problems are treated analytically in the strong-coupling limit. Numerically, we study the problem of a single impurity in a spin ladder by exact diagonalization to obtain the low-lying excitations. At finite concentrations and to leading order in the inter-rung coupling, we compare the spectra obtained from numerical diagonalization of large systems within the single-triplet subspace with the results of diagrammatic techniques, namely low-concentration and coherent-potential approximations. The contribution of small impurity clusters to the density of states is also discussed.Comment: 9 pages REVTeX4 including 7 figures, final version; Fig. 5 modifie
    corecore