204 research outputs found

    Atomtronics with holes: Coherent transport of an empty site in a triple well potential

    Get PDF
    We investigate arrays of three traps with two fermionic or bosonic atoms. The tunneling interaction between neighboring sites is used to prepare multi-site dark states for the empty site, i.e., the hole, allowing for the coherent manipulation of its external degrees of freedom. By means of an ab initio integration of the Schr\"odinger equation, we investigate the adiabatic transport of a hole between the two extreme traps of a triple-well potential. Furthermore, a quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum mechanics is used to get physical insight into the transport process. Finally, we discuss the use of the hole for the construction of a coherent single hole diode and a coherent single hole transistor.Comment: 9 pages, 6 figure

    Coherent population trapping in two-electron three-level systems with aligned spins

    Get PDF
    The possibility of coherent population trapping in two electron states with aligned spins (ortho-system) is evidenced. From the analysis of a three-level atomic system containing two electrons, and driven by the two laser fields needed for coherent population trapping, a conceptually new kind of two-electron dark state appears. The properties of this trapping are studied and are physically interpreted in terms of a dark hole, instead of a dark two-electron state. This technique, among many other applications, offers the possibility of measuring, with subnatural resolution, some superposition-state matrix-elements of the electron-electron correlation that due to their time dependent nature are inaccesible by standard measuring procedures.Comment: 10 pages and 4 figure

    Transferring orbital and spin angular momenta of light to atoms

    Full text link
    Light beams carrying orbital angular momentum, such as Laguerre-Gaussian beams, give rise to the violation of the standard dipolar selection rules during the interaction with matter yielding, in general, an exchange of angular momentum larger than hbar per absorbed photon. By means of ab initio 3D numerical simulations, we investigate in detail the interaction of a hydrogen atom with intense Gaussian and Laguerre-Gaussian light pulses. We analyze the dependence of the angular momentum exchange with the polarization, the orbital angular momentum, and the carrier-envelope phase of light, as well as with the relative position between the atom and the light vortex. In addition, a quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum mechanics is used to gain physical insight into the absorption of angular momentum by the hydrogen atom

    Three-dimensional numerical simulation of 1GeV/Nucleon U92+ impact against atomic hydrogen

    Get PDF
    The impact of 1GeV/Nucleon U92+ projectiles against atomic hydrogen is studied by direct numerical resolution of the time-dependent wave equation for the atomic electron on a three-dimensional Cartesian lattice. We employ the fully relativistic expressions to describe the electromagnetic fields created by the incident ion. The wave equation for the atom interacting with the projectile is carefully derived from the time-dependent Dirac equation in order to retain all the relevant terms.Comment: 12 pages and 7 figures included in the tex

    Goodness of fit comparisons among five bayesian models in genome-wide association of tick resistance in brazilian Hereford and Braford beef cattle.

    Get PDF
    This study aimed to compare five models fitness and top effect SNPs obtained with three different Bayesian GWAS methods applied to cattle tick resistance in Braford and Hereford
    corecore