35,654 research outputs found
What's Been Happening to Charitable Giving Recently? A Look at the Data
Examines the impact of the recession on giving by individuals, foundations, bequests, and corporations; the effects of tax policy changes on individual giving and bequests; and the potential effects of capping the charitable deduction at 28 percent
A comparison of spectral element and finite difference methods using statically refined nonconforming grids for the MHD island coalescence instability problem
A recently developed spectral-element adaptive refinement incompressible
magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp.
Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island
coalescence instability (MICI) in two dimensions. MICI is a fundamental MHD
process that can produce sharp current layers and subsequent reconnection and
heating in a high-Lundquist number plasma such as the solar corona [Ng and
Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin
current layers, it is highly desirable to use adaptively or statically refined
grids to resolve them, and to maintain accuracy at the same time. The output of
the spectral-element static adaptive refinement simulations are compared with
simulations using a finite difference method on the same refinement grids, and
both methods are compared to pseudo-spectral simulations with uniform grids as
baselines. It is shown that with the statically refined grids roughly scaling
linearly with effective resolution, spectral element runs can maintain accuracy
significantly higher than that of the finite difference runs, in some cases
achieving close to full spectral accuracy.Comment: 19 pages, 17 figures, submitted to Astrophys. J. Supp
Polar communications: Status and recommendations. Report of the Science Working Group
The capabilities of the existing communication links within the polar regions, as well as between the polar regions and the continental United States, are summarized. These capabilities are placed in the context of the principal scientific disciplines that are active in polar research, and in the context of how scientists both utilize and are limited by present technologies. Based on an assessment of the scientific objectives potentially achievable with improved communication capabilities, a list of requirements on and recommendations for communication capabilities necessary to support polar science over the next ten years is given
Nd:Glass-Raman laser for water vapor dial
A tunable solid-state Raman shifted laser which was used in a water vapor Differential Absorption Lidar (DIAL) system at 9400 A is described. The DIAL transmitter is based on a tunable glass laser operating at 1.06 microns, a hydrogen Raman cell to shift the radiation to 1.88 microns, and a frequency doubling crystal. The results of measurements which characterize the output of the laser with respect to optimization of optical configuration and of Raman parameters were reported. The DIAL system was also described and preliminary atmospheric returns shown
Recommended from our members
A multidisciplinary approach to the implementation of non-pharmacological strategies to manage infant pain
Hills E., Rosenberg J., Banfield N., Harding C. A multidisciplinary approach to the implementation of non-pharmacological strategies to manage infant pain. Infant 2020; 16(2): 78-81.
1. Newborn infants are capable of experiencing pain.
2. Infants requiring specialist hospital care are likely to experience painful medical procedures.
3. Unmanaged pain has a long-lasting impact on an infant’s behaviour and physiological status
Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions
The distribution function of suprathermal ions is found to be self-similar
under conditions relevant to inertial confinement fusion hot-spots. By
utilizing this feature, interference between the hydro-instabilities and
kinetic effects is for the first time assessed quantitatively to find that the
instabilities substantially aggravate the fusion reactivity reduction. The ion
tail depletion is also shown to lower the experimentally inferred ion
temperature, a novel kinetic effect that may explain the discrepancy between
the exploding pusher experiments and rad-hydro simulations and contribute to
the observation that temperature inferred from DD reaction products is lower
than from DT at National Ignition Facility.Comment: Revised version accepted for publication in PRL. "Copyright (2015) by
the American Physical Society.
- …
