68 research outputs found
Relationships among nutrient enrichment, detritus quality and quantity, and large-bodied shredding insect community structure
This is a post-peer-review, pre-copyedit version of an article published in Hydrobiologia. The final authenticated version is available online at: https://doi.org/10.1007/s10750-015-2208-2Anthropogenic nutrient enrichment of
forested headwater streams can enhance detrital quality, decrease standing stocks, and alter the community structure of detrivorous insects, reducing nutrient retention and decreasing ecosystem functioning. Our objective was to determine if stoichiometric
principles could be used to predict genus-specific shifts in shredding insect abundance and biomass across a dissolved nutrient and detritus food quality/quantity gradient. Detritus, insect, and water samples were collected from 12 Ozark Highland headwater
streams. Significant correlations were found between stream nutrients and detrital quality but not quantity. Abundance and biomass responses of four out of five tested genera were accurately predicted by consumerresource stoichiometric theory. Low carbon:phosphorus (C:P) shredders responded positively to increased total phosphorus and/or food quality, and high C:P shredders exhibited neutral or negative responses to these variables. Genus-specific declines were
correlated with decreased overall biomass in shredder assemblages, potentially causing disruptions in nutrient flows to higher level consumers with nutrient enrichment. This work provides further evidence that elevated nutrients may negatively impact shredding
insect communities by altering the stoichiometry of detritus–detritivore interactions. A better understanding of stoichiometric mechanisms altering macroinvertebrate populations is needed to help inform water quality criteria for the management of headwater streams
Forest-Stream Linkages: Effects of Terrestrial Invertebrate Input and Light on Diet and Growth of Brown Trout (Salmo trutta) in a Boreal Forest Stream
Subsidies of energy and material from the riparian zone have large impacts on recipient stream habitats. Human-induced changes, such as deforestation, may profoundly affect these pathways. However, the strength of individual factors on stream ecosystems is poorly understood since the factors involved often interact in complex ways. We isolated two of these factors, manipulating the flux of terrestrial input and the intensity of light in a 2×2 factorial design, where we followed the growth and diet of two size-classes of brown trout (Salmo trutta) and the development of periphyton, grazer macroinvertebrates, terrestrial invertebrate inputs, and drift in twelve 20 m long enclosed stream reaches in a five-month-long experiment in a boreal coniferous forest stream. We found that light intensity, which was artificially increased 2.5 times above ambient levels, had an effect on grazer density, but no detectable effect on chlorophyll a biomass. We also found a seasonal effect on the amount of drift and that the reduction of terrestrial prey input, accomplished by covering enclosures with transparent plastic, had a negative impact on the amount of terrestrial invertebrates in the drift. Further, trout growth was strongly seasonal and followed the same pattern as drift biomass, and the reduction of terrestrial prey input had a negative effect on trout growth. Diet analysis was consistent with growth differences, showing that trout in open enclosures consumed relatively more terrestrial prey in summer than trout living in covered enclosures. We also predicted ontogenetic differences in the diet and growth of old and young trout, where we expected old fish to be more affected by the terrestrial prey reduction, but we found little evidence of ontogenetic differences. Overall, our results showed that reduced terrestrial prey inputs, as would be expected from forest harvesting, shaped differences in the growth and diet of the top predator, brown trout
Benthic community structure and ecosystem functions in above- and below-waterfall pools in Borneo
Waterfalls are geomorphic features that often partition streams into discrete zones. Our study examined aquatic communities, litter decomposition and periphyton growth rates for above- and below-waterfall pools in Ulu Temburong National Park, Brunei. We observed higher fish densities in below-waterfall pools (0.24 fish m−2 vs. 0.02 fish m−2 in above-waterfall pools) and higher shrimp abundance in above-waterfall pools (eight shrimp/pool vs. less than one shrimp/pool in below-waterfall pools). However, macroinvertebrate densities (excluding shrimp) were similar among both pool types. Ambient periphyton was higher in below-waterfall pools in 2013 (4.3 vs. 2.8 g m−2 in above-waterfall pools) and 2014 (4.8 vs. 3.4 g m−2 in above-waterfall pools), while periphyton growth rates varied from 0.05 to 0.26 g m−2 days−1 and were significantly higher in below-waterfall pools in 2014. Leaf litter decomposition rates (0.001 to 0.024 days−1) did not differ between pool types, suggesting that neither shrimp nor fish densities had consistent impacts on this ecosystem function. Regardless, this research demonstrates the varied effects of biotic and abiotic factors on community structure and ecosystem function. Our results have highlighted the importance of discontinuities, such as waterfalls, in tropical streams.</p
Large-scale climatic phenomena drive fluctuations in macroinvertebrate assemblages in lowland tropical streams, Costa Rica: The importance of ENSO events in determining long-term (15y) patterns
Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages.This study was financed by National Science Foundation (DEB 1122389) to Catherine M. Pringle. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR
- …