10,123 research outputs found
Weighted Bergman kernels and virtual Bergman kernels
We introduce the notion of "virtual Bergman kernel" and apply it to the
computation of the Bergman kernel of "domains inflated by Hermitian balls", in
particular when the base domain is a bounded symmetric domain.Comment: 12 pages. One-hour lecture for graduate students, SCV 2004, August
2004, Beijing, P.R. China. V2: typo correcte
New Interactions with Workflow Systems
This paper describes the evaluation of our early design ideas of an ad-hoc of workflow system. Using the teach-back technique, we have performed a hermeneutic analysis of the mockup implementation named NIWS to get corrective and creative feedback at the functional, dialogue and representation level of the new workflow system
A supermassive binary black hole with triple disks
Hierarchical structure formation inevitably leads to the formation of
supermassive binary black holes (BBHs) with a sub-parsec separation in galactic
nuclei. However, to date there has been no unambiguous detection of such
systems. In an effort to search for potential observational signatures of
supermassive BBHs, we performed high-resolution smoothed particle hydrodynamics
(SPH) simulations of two black holes in a binary of moderate eccentricity
surrounded by a circumbinary disk. Building on our previous work, which has
shown that gas can periodically transfer from the circumbinary disk to the
black holes when the binary is on an eccentric orbit, the current set of
simulations focuses on the formation of the individual accretion disks, their
evolution and mutual interaction, and the predicted radiative signature. The
variation in mass transfer with orbital phase from the circumbinary disk
induces periodic variations in the light curve of the two accretion disks at
ultraviolet wavelengths, but not in the optical or near-infrared. Searches for
this signal offer a promising method to detect supermassive BBHs.Comment: Accepted for publication in the Astrophysical Journal, 16 pages, 11
figures. High Resolution Version is Available at
http://www2.yukawa.kyoto-u.ac.jp/~kimitake/bbhs.htm
Theoretical study of molecular electronic excitations and optical transitions of C60
We report results on ab initio calculations of excited states of the
fullerene molecule by using configuration interaction (CI) approach with singly
excited determinants (SCI). We have used both the experimental geometry and the
one optimized by the density functional method and worked with basis sets at
the cc-pVTZ and aug-cc-pVTZ level. Contrary to the early SCI semiempirical
calculations, we find that two lowest electron
optical lines are situated at relatively high energies of ~5.8 eV (214 nm) and
~6.3 eV (197 nm). These two lines originate from two transitions: from HOMO to (LUMO+1) () and from (HOMO--1)
to LUMO (). The lowest molecular excitation, which is the level, is found at ~2.5 eV. Inclusion of doubly excited determinants
(SDCI) leads only to minor corrections to this picture. We discuss possible
assignment of absorption bands at energies smaller than 5.8 eV (or
larger than 214 nm).Comment: 6 pages, 1 figure, 9 Table
Quantum Simulation of Quantum Field Theories in Trapped Ions
We propose the quantum simulation of a fermion and an antifermion field modes
interacting via a bosonic field mode, and present a possible implementation
with two trapped ions. This quantum platform allows for the scalable add-up of
bosonic and fermionic modes, and represents an avenue towards quantum
simulations of quantum field theories in perturbative and nonperturbative
regimes.Comment: To be published in Physical Review Letter
Continuous optical loading of a Bose-Einstein Condensate in the Thomas-Fermi regime
We discuss the optical loading of a Bose-Einstein condensate in the
Thomas-Fermi regime. The condensate is loaded via spontaneous emission from a
reservoir of excited-state atoms. By means of a master equation formalism, we
discuss the modification of the condensate temperature during the loading. We
identify the threshold temperature, , above (below) which the loading
process leads to cooling (heating), respectively. The consequences of our
analysis for the continuous loading of an atom laser are discussed.Comment: 7 pages, 3 figure
- …