175 research outputs found

    Capillary rising damp in Venetian context : state of the art and numerical simulation

    Get PDF
    The fragility of Venice and its buildings are linked to the floods, observed since ancient times and emphasized in recent years: the periodic sea level rise, accompanied by rising damp, are the main causes of the alteration. In particular, the rising damp causes a series of complex diseases in the historic buildings, such as physical decay, chemical or biological, with loss of aesthetic and economic value. In addition, greater heat dispersion and reduced thermal comfort can also occur in interior spaces, with consequent risks for human health. This is a sign of “Sick Building Syndrome”. It is very important to develop models for assessing the vulnerability of assets and to manage sustainable plans related to maintenance processes and activities, satisfying the requirements of effectiveness and compatibility.Basing on numerical models performed with the WUFI 2D software, the paper analyses the different behavior of rising damp in relation to materials or masonry structures. In particular, the construction techniques and typical materials used in Venetian buildings were investigated, such as clay brick walls, lime plaster, Marmorino and Cocciopesto, adopted mainly to limit the capillary rise also caused by the phenomenon of “acqua alta”

    Retrofit of an Historical Building toward NZEB

    Get PDF
    Abstract The European Directive on Energy Efficiency in Buildings (Directive 2010/31/EU) has introduced the need to transform buildings to nearly zero energy (NZEB) by 2020. Existing buildings represent the major part of the building stock and an interesting challenge is to transfer it toward NZEB. Energy retrofit is even more significant in Italy, where existing buildings stock (mainly residential) is also historic, so it's subject to environmental constraints or architectural-artistic value, and it's influenced by specific regulations and methods of intervention for refurbishment. In this case, the challenge becomes even more important and concerns both the building shell and the systems: retrofitting introduces not originally present in the complex; retrofit is not covered in the maintenance, since it represents an upgrade, an adaptation of the building, specifically in relation to energy efficiency, but also, by extension, other functions / features pertaining to the environment and sustainability. A case study of a radical refurbishment of an historical building is Ca' S. Orsola in Treviso. It is ruled by the Historical and Architectural Veneto Regional Authority. The building has been transformed into a prestigious residential complex by a major renovation that was aimed primarily seismic and energy upgrading. The energy and environmental performance of building have been analyzed by numerical simulation and experimental measurement in the EBC IEA Annex 56 [1] context with the aim to verify that intervention strategies respect to the reduction of energy consumption, the minimization of CO 2 emissions and maximizing the use of sources of renewable energy

    proposal of a methodology for achieving a leed o m certification in historic buildings

    Get PDF
    Abstract Nowadays resources are running out quickly, it's necessary to consider how the construction industry influences the environment using different materials and sources during all the building's life cycle. For this reason, in every transformation phases it's necessary to consider concepts as sustainability and green buildings. These are diffused from hundreds kind of green assessment tools, developed to measure sustainability goals in building sector and to compare the project with possible best practices or other green buildings. In this background, the rating system LEED (Leadership in Energy and Environmental Design) aims to examine and classify buildings according to energetic and environmental requirements. The particular LEED O+M (Building Operations and Maintenance) is developed for existing buildings undergoing improvement work or little to no construction and is based on the operative and management aspects. The certification process results, at a first analysis, hard to follow due to the complexity of internal parameters and the documentation required. The paper consists in a methodology and in an univocal work program of LEED O+M, trying to obtain the minimum requested certification score with optimization of the technical resources and documents. This methodology has application in a case study of historic building: the Ca' Rezzonico Museum, in the center of Venice

    Cost-Optimal measures for renovation of existing school buildings towards nZEB

    Get PDF
    Abstract The energy policies of the European Union (EU) encourage the member states to convert building stock into nearly Zero-Energy Buildings (nZEB) and national public authorities to adopt exemplary actions. Directive 2010/31/EU (EPBD recast) introduces the concept of nZEB as a building that has a very high energy performance and its energy need is covered to a very significant extent by energy from renewable sources (RES). Moreover the Directive refers to the cost-optimal methodology for fixing building energy requirements. This paper presents the results of the application of the cost-optimal methodology in a couple of existing school buildings located in the North East of Italy. The analysed buildings are a primary and a secondary schools that differ in construction period, in compactness ratio, in buildings envelope materials and systems. Several combinations of retrofit measures have been applied in order to derive cost-effective efficient solutions for retrofitting according to the methodology proposed by the project Annex56 "Cost Effective Energy & CO2 Emissions Optimization in Building Renovation". The cost-optimal level has been identified for each building and the best performing solutions have been selected considering a financial analysis and the application of "Conto Termico 2.0" government incentives. The results show the suitability of the proposed methodology to assess cost-optimality and energy efficiency in school building refurbishment. Moreover, this study shows different possibility providing the most cost-effective balance between costs and energy saving

    Structural and Thermal Behaviour of a Timber-concrete Prefabricated Composite Wall System

    Get PDF
    Abstract Wood is the oldest building materials and still now it plays an important role in the construction sector. There are many general advantages in using timber for building purposes. First of all, it is an environmentally friendly, easily recyclable material; it has a low weight in relation to strength, which is advantageous for transport, handling and production; moreover wood has aesthetic qualities, which give great possibilities in architectural design. Lastly wooden structures have an excellent performance in case of earthquake if compared to traditional structures. In Europe the development of the timber-concrete composite structures (TCC) began during a shortage of steel for reinforcement in concrete in the beginning of XX century. TCC application was primarily a refurbishment technique for old historical buildings, during the last 50 years interest in TCC systems has increased, resulting in the construction also of new buildings. This paper presents the analysis of the structural and thermal behaviour of an timber-concrete prefabricated composite wall system, the Concrete Glulam Framed Panel (CGFP) which is a panel made of a concrete slab and a structural glulam frame. The research analyses the structural performance with quasi-static in-plane tests, focused on the in-plane strength and stiffness of individual panels, and the thermal behaviour of the system with steady state tests using an hot box apparatus. The results validate the efficacy of proposed system ensuring the resistance and the dissipative structural behaviour through the hierarchy response characterized by the wood frame, the braced reinforced concrete panel of the singular module and by the rocking effects of global system. On the other side hot-box measures demonstrated a high level of thermal resistance of the system reaching U-values around 0,20 W m -2 K -1 . Moreover experimental data permitted to calibrate a FEM model with which will be possible to study and analyse the panels in different conditions and configuration in both mechanical and thermal field

    Set-up and Calibration by Experimental Data of a Numerical Model for the Estimation of Solar Factor and Ug-value of Building Integrated Photovoltaic Systems☆

    Get PDF
    Abstract The acronym BIPV (Building Integrated Photovoltaics) refers to the installation of photovoltaic systems which, in addition to convert solar energy into electrical energy, have a high level of architectonical integration with the built environment, becoming a real architectural cladding to be installed over the buildings in place of traditional envelope systems. Many typologies of BIPV have been developed, however their thermal characteristics such as g and Ug-value are not well evaluated and require more detailed analyses considering that they could replace large extension of traditional building envelope. A first approach to address this problem is proposed in this work. A mathematical model based on a finite differences scheme for the estimation of the thermal parameters g and Ug-value has been developed and tuned using experimental value measured on sample BIPV with a Hot Plate and a Solar Calorimeter. The results of the model show that the introduction of solar cells in a laminated glass or in a double glass leads to a reduction of energy parameters modifying winter and summer energy balance of the building system

    Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data

    Get PDF
    © 2019, The Author(s). Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers

    Nonanticommutative U(1) SYM theories: Renormalization, fixed points and infrared stability

    Full text link
    Renormalizable nonanticommutative SYM theories with chiral matter in the adjoint representation of the gauge group have been recently constructed in [arXiv:0901.3094]. In the present paper we focus on the U*(1) case with matter interacting through a cubic superpotential. For a single flavor, in a superspace setup and manifest background covariant approach we perform the complete one-loop renormalization and compute the beta-functions for all couplings appearing in the action. We then generalize the calculation to the case of SU(3) flavor matter with a cubic superpotential viewed as a nontrivial NAC generalization of the ordinary abelian N=4 SYM and its marginal deformations. We find that, as in the ordinary commutative case, the NAC N=4 theory is one-loop finite. We provide general arguments in support of all-loop finiteness. Instead, deforming the superpotential by marginal operators gives rise to beta-functions which are in general non-vanishing. We study the spectrum of fixed points and the RG flows. We find that nonanticommutativity always makes the fixed points unstable.Comment: 1+30 pages, 5 figure

    Chiral effective potential in N=1/2{\cal N}={1/2} non-commutative Wess-Zumino model

    Full text link
    We study a structure of holomorphic quantum contributions to the effective action for N=1/2{\cal N}={1/2} noncommutative Wess-Zumino model. Using the symbol operator techniques we present the one-loop chiral effective potential in a form of integral over proper time of the appropriate heat kernel. We prove that this kernel can be exactly found. As a result we obtain the exact integral representation of the one-loop effective potential. Also we study the expansion of the effective potential in a series in powers of the chiral superfield Ί\Phi and derivative D2ΊD^2{\Phi} and construct a procedure for systematic calculation of the coefficients in the series. We show that all terms in the series without derivatives can be summed up in an explicit form.Comment: LaTeX, JHEP style, 32 pages, typos corrected, references adde

    Beam test, simulation, and performance evaluation of PbF2_2 and PWO-UF crystals with SiPM readout for a semi-homogeneous calorimeter prototype with longitudinal segmentation

    Full text link
    Crilin (Crystal Calorimeter with Longitudinal Information) is a semi-homogeneous, longitudinally segmented electromagnetic calorimeter based on high-ZZ, ultra-fast crystals with UV-extended SiPM readout. The Crilin design has been proposed as a candidate solution for both a future Muon Collider barrel ECAL and for the Small Angle Calorimeter of the HIKE experiment. As a part of the Crilin development program, we have carried out beam tests of small (10×10×4010\times10\times40~mm3^3) lead fluoride (PbF2_2) and ultra-fast lead tungstate (PbWO4_4, PWO) crystals with 120~GeV electrons at the CERN SPS to study the light yield, timing response, and systematics of light collection with a proposed readout scheme. For a single crystal of PbF2_2, corresponding to a single Crilin cell, a time resolution of better than 25~ps is obtained for >>3 GeV of deposited energy. For a single cell of \pwo, a time resolution of better than 45~ps is obtained for the same range of deposited energy. This timing performance fully satisfies the design requirements for the Muon Collider and HIKE experiments. Further optimizations of the readout scheme and crystal surface preparation are expected to bring further improvements
    • 

    corecore