1,896 research outputs found
Co-digestion of macroalgae for biogas production: an LCA-based environmental evaluation
Algae represent a favourable and potentially sustainable source of biomass for bioenergy-based industrial pathways in the future.
The study, performed on a real pilot plant implemented in Augusta (Italy) within the frame of the BioWALK4Biofuels project,
aims to figure out whether seaweed (macroalgae) cultivated in near-shore open ponds could be considered a beneficial aspect as a
source of biomass for biogas production within the co-digestion with local agricultural biological waste. The LCA results
confirm that the analysed A and B scenarios (namely the algae-based co-digestion scenario and agricultural mix feedstock
scenario) present an environmental performance more favourable than that achieved with conventional non-renewable-based
technologies (specifically natural gas - Scenario C). Results show that the use of seaweed (Scenario A) represent a feasible
solution in order to replace classical biomass used for biofuel production from a land-based feedstock. The improvement of the
environmental performances is quantifiable on 10% respect to Scenario B, and 38 times higher than Scenario
Composition of fungal communities in soil and endophytic in raspberry production systems.
Fungi play important roles as decomposers, plant symbionts and pathogens in soil. While endophytes are microorganisms that dwell within plant tissues and have a symbiotic association with the host. The structures of fungal communities in the soil and in endophytic association are dependent up complex interactions with the environment and the host. These two communities have a great influence on plant health and development. Using culture-independent fungal community profiling, we investigated the effects of fertilizer (composted dairy solids + mustard seed meal) on fungal communities in soil and endophytic in a raspberry production system. During the study we evaluated the impact of primer selection ITS1 vs ITS2. We characterized the communities for both spring and fall time periods. The results show that the soil communities are dominated by Ascomycota, and Basidiomycota in soil, while the endophytes were primarily Ascomycota. The relative abundances of certain taxa, such as Capnodiales, were more predominant in composted soil (8%) than the control (4%). There were no significant differences identified in the endophytic communities between the two treatments. Further research should elucidate the specific roles of these fungal taxa in raspberry soils and endophyte, and on the heath of the plant. To advance the ecological management of crop soils, understanding is needed of how beneficial microbial relationships can be fostered in these production systems
Dinâmica do microbioma ruminal de ovinos Ovis aries e sua relação com a degradação da biomassa.
Considerando a dieta como um fator modulador do microbioma ruminal, neste trabalho objetivou-se investigar o impacto do bagaço da cana-de-açúcar sobre a composição e funcionalidade das espécies microbianas residentes no rúmen de carneiros (Ovis aries). Foram utilizados seis animais machos fistulados de O. aries, dos quais três foram alimentados com uma dieta composta por 70% de volumoso e 30% de concentrado (tratamento controle) e outros três animais alimentados com uma dieta similar a anterior, mas com 14% do volumoso substituído por bagaço de cana-de-açúcar (tratamento bagaço). O conteúdo ruminal (líquido e fibra) foram amostrados quinzenalmente durante 60 dias. A partir dessas amostras foram acessadas a estrutura e a composição da comunidade microbiana pela extração de DNA total e amplificação das regiões V3 e V6-V7 do gene 16S rRNA bacteriano e a região intergênica fúngica (ITS2). Além disso, foram feitas análises metagenômicas e metatranscriptômicas de comunidade microbianas enriquecidas em fibra ruminal para identificar enzimas lignocelulolíticas expressas. As frações líquida e fibrosa do conteúdo ruminal de O. aries revelaram uma comunidade bacteriana dominada principalmente por Bacteroidetes e Firmicutes ao longo de todo período experimental. Dois gêneros, Prevotella e Ruminococcus representaram 20% e 4% da comunidade bacteriana ruminal, respectivamente. Para a comunidade fúngica o filo Neocallimastigomycota representou 91% das sequências e os principais gêneros deste filo foram Piromyces, Neocallimastix, Orpinomyces, Anaeromyces, Caecomyces e Cyllamyces aderidos a fibra ruminal. O gênero Caecomyces, foi significativamente mais abundante na fibra ruminal de animais que se alimentaram de bagaço de cana-de açúcar. Além disso, foi observado um aumento significativo na frequência de enzimas como, por exemplo, 1,4-α-glucano, α-galactosidase, endo 1,4-β-xilanase, β- xilosidase, xilose isomerase, celobiose fosforilase e α-N-arabinofuranosidase no tratamento com bagaço de cana-de-açúcar. Considerando que a recuperação de enzimas a partir de comunidades microbianas naturalmente selecionadas para a degradação de biomassa é uma estratégia promissora para superar a atual ineficiência da ação enzimática na produção industrial de biocombustíveis, os resultados deste trabalho representam a possibilidade de aumentar a capacidade de recuperação ou descoberta de enzimas a partir de ruminantes, ou ainda, a possibilidade de manipular a estrutura do microbioma do rúmen para usá-lo como fonte de inóculo enriquecido em processos industriais de degradação de biomassa.Tese (Doutorado em Microbiologia agrícola) - ESALQ/USP, Piracicaba. Orientador: Rodrigo Mendes (CNPMA)
Competence in transbronchial cryobiopsy
Over the last decade transbronchial lung cryobiopsy (TBLC) has proven to be an “innovative application” of an “old procedure” for the histologic diagnosis of diffuse interstitial lung diseases (DI LDs). Thus, the technique of TBL cryobiopsy is now adopted for diagnostic purposes, transbronchially in peripheral airways to sample lung parenchyma, whereas this same technique was traditionally employed in the past for therapeutic purposes, essentially for the management of malignant obstruction of central airways. When patients with interstitial lung diseases (ILDs) need histopathological data in their diagnostic pathway, this bioptic approach could be a valid alternative to surgical lung biopsy, that is still the gold standard at the moment. TBL cryobiopsy has a good safety profile, its sensitivity and specificity appear good overall in idiopathic pulmonary fibrosis. In the last ten years, many papers have been published about this procedure defining modalities by which cryobiopsy should be performed. These studies have shown that TBL cryobiopsy is feasible, it allows to obtain larger lung parenchymal specimens (3 times larger than “classic” transbronchial biopsies), characterized by unaltered and artefact-free morphology, and it represents a safe and poorly invasive diagnostic tool for the histologic diagnosis of ILDs. The technical aspects are really important, and they still need a complete standardization. TBL cryobiopsy should be part of an equipment of the modern interventional pulmonologist, who should know indications and contraindications of this methodic and the technical aspects of the procedure. This is a complex procedure requiring to be performed by endoscopists working in specialized centers with specific knowledge of DILDs, and a multidisciplinary approach, which represent pre-requisites for admission to training in this procedure
LCA of Zero Valent Iron Nanoparticles Encapsulated in Algal Biomass for Polishing Treated Effluents
Research data produced within the CARIPLO IMAP and Perform Water 2030 projects were processed using the SimaPro software to carry out the Life Cycle Assessment according to ISO 14040-44 of an innovative process of treated effluents' polishing. The study aims to evaluate the integration of a microalgae culture as a side-stream process into the baseline layout of a wastewater treatment plant to remove nitrogen from the supernatant of sludge centrifugation from an environmental perspective. In particular, the investigated system focuses on using the algal biomass produced as an organic matrix for encapsulating zero-valent iron nanoparticles to be used for the final refinement of the effluent. Zero-valent iron (ZVI) is a reactive metal and an effective reducing agent. It can be used to remove organic and inorganic pollutants (e.g., chlorinated organics, pharmaceuticals, metals, textile dyestuffs). The encapsulation of ZVI by hydrothermal carbonization (HTC) in a carbonaceous matrix allows for overcoming the problems related to its lack of stability, easy aggregation, and difficulty in separating the ZVI nanoparticles from the treated solution. The case study refers to Bresso wastewater treatment plant (Milan province, Northern Italy). The environmental performances of the study were assessed following the Life Cycle Impact Assessment methods IMPACT 2002+. According to the results, the new process integration does not affect the environmental performance of the WWTP, still implying a significant improvement in the removal of metals and micropollutants. In fact, due to the ability of ZVI nanoparticles to remove organic and inorganic pollutants, the outflowing load will be significantly reduced, which will improve the environmental performance of the entire Bresso wastewater treatment plant
Sugar cane bagasse affects bacterial community dynamics in the sheep rumen.
Ruminants are herbivores and have evolved a symbiotic host-microbe relationship with a complex microbial community inhabiting the rumen allowing the use of lignocellulosic biomass as their main energy source. Considering that diet is one of the main drivers shaping the structure of the rumen microbiome, we investigated the impact of sugarcane bagasse in the rumen bacterial community dynamic using 16S rRNA (V3 and V6 regions) amplicon sequencing. We assessed three rumencannulated adult male sheep (Ovis aries) fed on a diet consisted of 30% concentrate and 70% roughage (control treatment) and three sheep fed on the same diet, but with 14% of the roughage portion replaced by sugarcane bagasse. Fluid and fiber were separately sampled 3 hours and 15, 30, 45, and 60 days after starting the experiment. Total genomic DNA was extracted from 60 independent samples (2 treatments X 3 replicates X 5 time points X 2 types of samples, i.e. fluid or fiber) for downstream analysis. The DNA was used as a template for amplification of V3 and V6 regions of the bacterial 16S rRNA gene and then sequenced using the PGMTM (Ion Torrent). Overall, the two dominant phyla were Bacteroidetes (42%) and Firmicutes (37%). The most abundant bacterial genus was Prevotella (20%), followed by Clostridium (9%), Ruminococcus (8%) and Butyrivibrio (2%). The principal coordinate analysis (PcoA) showed that the bacterial community was significantly different in both treatments at 60 days. Bacteroidales, Actinomycetales and Clostridiales were the top dynamic bacterial orders that significantly increased in relative abundance in the treatment with sugar cane bagasse after 60 days. Canonical correspondence analysis (CCA) revealed that the Clostridiales and Bacteroidales are positively correlated with propionate, butyrate, ammonia, and pH. These results indicate that a small replacement in the diet roughage portion influences de dynamic of specific bacterial taxa. This strategy can be used to reshape the bacterial community in the sheep rumen aiming to enrich the targeted bacterial taxa. Support FAPESP 2012/03848-8, 2012/24588-4 and 2014/00448-4.13th BAGECO1
Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector
The extreme radiation dose received by vertex detectors at the Large Hadron
Collider dictates stringent requirements on their cooling systems. To be robust
against radiation damage, sensors should be maintained below -20 degree C and
at the same time, the considerable heat load generated in the readout chips and
the sensors must be removed. Evaporative CO2 cooling using microchannels etched
in a silicon plane in thermal contact with the readout chips is an attractive
option. In this paper, we present the first results of microchannel prototypes
with circulating, two-phase CO2 and compare them to simulations. We also
discuss a practical design of upgraded VELO detector for the LHCb experiment
employing this approach.Comment: 12 page
- …