12,888 research outputs found

    Locally Inertial Reference Frames in Lorentzian and Riemann-Cartan Spacetimes

    Full text link
    In this paper we scrutinize the concept of locally inertial reference frames (LIRF) in Lorentzian and Riemann-Cartan spacetime structures. We present rigorous mathematical definitions for those objects, something that needs preliminary a clear mathematical distinction between the concepts of observers, reference frames, naturally adapted coordinate functions to a given reference frame and which properties may characterize an inertial reference frame (if any) in the Lorentzian and Riemann-Cartan structures. We hope to have clarified some eventual obscure issues associated to the concept of LIRF appearing in the literature, in particular the relationship between LIRFs in Lorentzian and Riemann-Cartan spacetimes and Einstein's most happy though, i.e., the equivalence principle.Comment: In this version a new reference has been added, some misprints and typos have been corrected and some few sentences in two remarks and in the conclusions have been changed for better intelligibilit

    Rigorous Formulation of Duality in Gravitational Theories

    Full text link
    In this paper we evince a rigorous formulation of duality in gravitational theories where an Einstein like equation is valid, by providing the conditions under which the Hodge duals (with respect to the metric tensor g) of T^a and R_b^a may be considered as the torsion and curvature 2-forms associated with a connection D', part of a Riemann-Cartan structure (M,g',D'), in the cases g = g' and g does not equal g', once T^a and R_b^a are the torsion and curvature 2-forms associated with a connection D part of a Riemann-Cartan structure (M,g,D). A new form for the Einstein equation involving the dual of the Riemann tensor of D is also provided, and the result is compared with others appearing in the literature.Comment: 15 page

    Is Small Perfect? Size Limit to Defect Formation in Pyramidal Pt Nanocontacts

    Get PDF
    We report high resolution transmission electron microscopy and ab initio calculation results for the defect formation in Pt nanocontacts (NCs). Our results show that there is a size limit to the existence of twins (extended structural defects). Defects are always present but blocked away from the tip axes. The twins may act as scattering plane, influencing contact electron transmission for Pt NC at room temperature and Ag/Au NC at low temperature.Comment: 4 pages, 3 figure

    A Multiple Criteria Framework to Evaluate Bank Branch Potential Attractiveness

    Get PDF
    Remarkable progress has occurred over the years in the performance evaluation of bank branches. Even though financial measures are usually considered the most important in assessing branch viability, we posit that insufficient attention has been given to other factors that affect the branches’ potential profitability and attractiveness. Based on the integrated used of cognitive maps and MCDA techniques, we propose a framework that adds value to the way that potential attractiveness criteria to assess bank branches are selected and to the way that the trade-offs between those criteria are obtained. This framework is the result of a process involving several directors from the five largest banks operating in Portugal, and follows a constructivist approach. Our findings suggest that the use of cognitive maps systematically identifies previously omitted criteria that may assess potential attractiveness. The use of MCDA techniques may clarify and add transparency to the way trade-offs are dealt with. Advantages and disadvantages of the proposed framework are also discussed.

    Generalization of Dirac Non-Linear Electrodynamics, and Spinning Charged Particles

    Full text link
    In this note we generalized the Dirac non-linear electrodynamics, by introducing two potentials (namely, the vector potential A and the pseudo-vector potential gamma^5 B of the electromagnetic theory with charges and magnetic monopoles) and by imposing the pseudoscalar part of the product omega.omega* to be zero, with omega = A + gamma^5 B. We show that the field equations of such a theory possess a soliton-like solution which can represent a priori a "charged particle", since it is endowed with a Coulomb field plus the field of a magnetic dipole. The rest energy of the soliton is finite, and the angular momentum stored in its electromagnetic field can be identified --for suitable choices of the parameters-- with the spin of the charged particle. Thus this approach seems to yield a classical model for the charged (spinning) particle, which does not meet the problems met by earlier attempts in the same direction.Comment: standard LaTeX file; 16 pages; it is a corrected version of a paper appeared in Found. Phys. (issue in honour of A.O.Barut) 23 (1993) 46

    Superconducting charge qubits from a microscopic many-body perspective

    Full text link
    The quantised Josephson junction equation that underpins the behaviour of charge qubits and other tunnel devices is usually derived through cannonical quantisation of the classical macroscopic Josephson relations. However, this approach may neglect effects due to the fact that the charge qubit consists of a superconducting island of finite size connected to a large superconductor. We show that the well known quantised Josephson equation can be derived directly and simply from a microscopic many-body Hamiltonian. By choosing the appropriate strong coupling limit we produce a highly simplified Hamiltonian that nevertheless allows us to go beyond the mean field limit and predict further finite-size terms in addition to the basic equation.Comment: Accepted for J Phys Condensed Matte
    • 

    corecore