10 research outputs found

    Iandumoema uai, a new genus and species of troglobitic harvestman from Brazil (Arachnida, Opiliones, Gonyleptidae)

    No full text
    A new genus and species of harvestman, landumoema uai, is described based on material from Gruta Olhos d'Água, Minas Gerais State, Brazil. Its troglomorphisms include depigmentation on body, legs and eyes. It is the third troglobitic species of harvestman recorded from Brazilian caves and the second in the family Gonyleptidae

    Description of the male of Daguerreia inermis Soares & Soares, with biological notes on population size in the Gruta da Lancinha, Paraná, Brazil (Arachnida, Opiliones, Gonyleptidae)

    No full text
    The male of Daguerreia inermis Soares & Soares, 1947, a troglophilic harvestman, is described. Distribution records are given for caves of the Speleological Province of Vale do Ribeira and two non carbonatic areas (Telêmaco Borba and Arapoti, Paraná), in southeastern Brazil. The population of the Gruta da Lancinha (Paraná, Brazil) was studied from October 1988 to February 1989. The population size was estimated, by Fisher Ford\u27s method, between 158-610 individuals. The sex ratio observed was 1:1

    Umbelliferone Induces Changes In The Structure And Pharmacological Activities Of Bn Iv, A Phospholipase A2 Isoform Isolated From Bothrops Neuwiedi

    No full text
    In this paper was demonstrated that umbelliferone induces changes in structure and pharmacological activities of Bn IV, a lysine 49 secretory phospholipase A2 (sPLA2) from Bothrops neuwiedi. Incubation of Bn IV with umbelliferone virtually abolished platelet aggregation, edema, and myotoxicity induced by native Bn IV. The amino acid sequence of Bn IV showed high sequence similarities with other Lys49 sPLA2s from B. jararacussu (BthTx-I), B. pirajai (PrTx-I), and B. neuwiedi pauloensis (Bn SP6 and Bn SP7). This sPLA2 also has a highly conserved C-terminal amino acid sequence, which has been shown as important for the pharmacological activities of Lys49 sPLA2. Sequencing of Bn IV previously treated with umbelliferone revealed modification of S(1) and S(20). Fluorescent spectral analysis and circular dichroism (CD) studies showed that umbelliferone modified the secondary structure of this protein. Moreover, the pharmacological activity of Bn IV is driven by synergism of the C-terminal region with the α-helix motifs, which are involved in substrate binding of the Asp49 and Lys49 residues of sPLA2 and have a direct effect on the Ca2+-independent membrane damage of some secretory snake venom PLA2. For Bn IV, these interactions are potentially important for triggering the pharmacological activity of this sPLA2. © 2011 Elsevier Ltd.576851860Chan, A.C., Pritchard, E.T., Gerrard, J.M., Man, R.Y., Choy, P.C., Biphasic modulation of platelet phospholipase A2 activity and platelet aggregation by mepacrine (quinacrine) (1982) Biochim. Biophys. Acta., 713 (1), pp. 170-172Chioato, L., Ward, R.J., Mapping structural determinants of biological activities in snake venom phospholipases A2 by sequence analysis and site directed mutagenesis (2003) Toxicon, 42 (8), pp. 869-883Chioato, L., Aragão, E.A., Lopes Ferreira, T., Medeiros, A.I., Faccioli, L.H., Ward, R.J., Mapping of the structural determinants of artificial and biological membrane damaging activities of a Lys49 phospholipase A2 by scanning alanine mutagenesis (2007) Biochim. Biophys. Acta., 1768 (5), pp. 1247-1257Cintra, A.C., Marangoni, S., Oliveira, B., Giglio, J.R., Bothropstoxin-I: amino acid sequence and function (1993) J. Protein Chem., 12 (1), pp. 57-64Di Carlo, G., Mascolo, N., Izzo, A.A., Capasso, F., Flavonoids: old and new aspects of a class of natural therapeutic drugs (1999) Life Sci., 65, pp. 337-353dos Santos, M.L., Fagundes, F.H., Teixeira, B.R., Toyama, M.H., Aparicio, R., Purification and preliminary crystallographic analysis of a new Lys49-PLA2 from B. Jararacussu (2008) Int. J. Mol. Sci., 9 (5), pp. 736-750Diz Filho, E.B., Marangoni, S., Toyama, D.O., Fagundes, F.H., Oliveira, S.C., Fonseca, F.V., Calgarotto, A.K., Toyama, M.H., Enzymatic and structural characterization of new PLA2 isoform isolated from white venom of Crotalus durissus ruruima (2009) Toxicon, 53 (1), pp. 104-114Fawzy, A.A., Vishwanath, B.S., Franson, R.C., Inhibition of human non-pancreatic phospholipases A2 by retinoids and flavonoids. Mechanism of action (1988) Agents Actions, 25, pp. 394-400Fonseca, F.V., Baldissera, L., Camargo, E.A., Antunes, E., Diz-Filho, E.B., Corrêa, A.G., Beriam, L.O., Toyama, M.H., Effect of the synthetic coumarin, ethyl 2-oxo-2H-chromene-3-carboxylate, on activity of Crotalus durissus ruruima sPLA2 as well as on edema and platelet aggregation induced by this factor (2010) Toxicon, 55 (8), pp. 1527-1530. , JFuly, A.L., Soares, A.M., Marcussi, S., Giglio, J.R., Guimar̃aes, J.A., Signal transduction pathways involved in the platelet aggregation induced by a D-49 phospholipase A2 isolated from Bothrops jararacussu snake venom (2004) Biochimie, 86, pp. 731-739Gil, B., Sanz, M.J., Terencio, M.C., Gunasegaran, R., Payá, M., Alcaraz, M.J., Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity (1997) Biochem Pharmacol., 53 (5), pp. 733-740Ghani, U., Ng, K.K., Atta-ur-Rahman Choudhary, M.I., Ullah, N., James, M.N., Crystal structure of gamma-chymotrypsin in complex with 7-hydroxycoumarin (2001) J Mol Biol., 314 (3), pp. 519-525Gutiérrez, J.M., Ownby, C.L., Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity (2003) Toxicon, 42 (8), pp. 915-931Hefner, Y., Borsch-Haubold, A.G., Murakami, M., Wilde, J.I., Pasquet, S., Schieltz, D., Ghomashchi, F., Gelb, M.H., Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases (2000) J. Biol. Chem., 275 (48), pp. 37542-37551Henrikson, R.L., Meredith, S.C., Amino acid analysis by reverse phase high performance liquid chromatography: pre-column derivatization with phenylisothiocyanate (1984) Anal. Biochem., 136, pp. 65-71Holland, J.A., Pritchard, K.A., Pappolla, M.A., Wolin, M.S., Rogers, N.J., Stemerman, M.B., Bradykinin induces superoxide anion release from human endothelial cells (1990) J. Cell Physiol., 143 (1), pp. 21-25Iglesias, C.V., Aparicio, R., Rodrigues-Simioni, L., Camargo, E.A., Antunes, E., Marangoni, S., Toyama, D.O., Toyama, M.H., Effects of morin on snake venom phospholipase A(2) (PLA(2) (2005) Toxicon, 46, pp. 751-758Kostova, I., Monolov, I., Karaivonova, M., Synthesis, physicochemical characterization, and cytotoxic screening of new zirconium complexes with coumarin derivatives (2001) Arch. Pharm. (Weinheim), 334, pp. 157-162Kramer, R.M., Roberts, E.F., Manetta, J.V., Hyslop, P.A., Jakubowski, J.A., Thrombin-induced phosphorylation and activation of Ca(2+)-sensitive cytosolic phospholipase A2 in human platelets (1993) J. Biol. Chem., 268, pp. 26796-26804Kramer, R.M., Roberts, E.F., Um, S.L., Börsch-Haubold, A.G., Watson, S.P., Fisher, M.J., Jakubowski, J.A., P38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2 (1996) J. Biol. Chem., 271 (44), pp. 27723-27729Kroll, M.H., Schafer, A.I., Biochemical mechanisms of platelet activation (1989) Blood, 74 (4), pp. 1181-1195Leung, L., Nachman, R., Molecular mechanisms of platelet aggregation (1986) Annu. Rev. Med., 37, pp. 179-186Lindahl, M., Tagesson, C., Flavonoids as phospholipase A2 inhibitors: importance of their structure for selective inhibition of group II phospholipase A2 (1997) Inflammation, 21, pp. 347-356Lomonte, B., Angulo, Y., Calderón, L., An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action (2003) Toxicon, 42 (8), pp. 885-901Magro, A.J., Soares, A.M., Giglio, J.R., Fontes, M.R., Crystal structures of BnSP-7 and BnSP-6, two Lys49-phospholipases A(2): quaternary structure and inhibition mechanism insights (2003) Biochem. Biophys. Res. Comm., 311 (3), pp. 713-720Marshall, L.A., Chang, J.Y., Calhoun, W., Yu, J., Carlson, R.P., Preliminary studies on phospholipase A2-induced mouse paw edema as a model to evaluate antiinflammatory agents (1989) J. Cell Biochem., 40 (2), pp. 147-155Massini, P., Lüscher, E.F., On the significance of the influx of calcium ions into stimulated human blood platelets (1976) Biochim Biophys Acta., 436 (3), pp. 652-663Murray, R.D., Coumarins (1989) Nat. Prod. Rep., 6, pp. 591-624Nirmal, N., Praba, G.O., Velmurugan, D., Modeling studies on phospholipase A2-inhibitor complexes (2008) Indian J. Biochem. Biophys., 45 (4), pp. 256-262Oliveira, C.F., Lopes, D.S., Mendes, M.M., Homsi-Brandeburgo, M.I., Hamaguchi, A., de Alcântara, T.M., Clissa, P.B., Rodrigues, V.M., Insights of local tissue damage and regeneration induced by BnSP-7, a myotoxin isolated from Bothrops (neuwiedi) pauloensis snake venom (2009) Toxicon, 53 (5), pp. 560-569Polgár, J., Kramer, R.M., Um, S.L., Jakubowski, J.A., Clemetson, K.J., Human group II 14 kDa phospholipase A2 activates human platelets (1997) Biochem. J, 327 (PART 1), pp. 259-265Puri, R.N., Phospholipase A2: its role in ADP- and thrombin-induced platelet activation mechanisms (1998) Int. J. Biochem. Cell Biol., 30, pp. 1107-1122Qin, S., Pande, A.H., Nemec, K.N., Tatulian, S.A., The N-terminal alpha-helix of pancreatic phospholipase A2 determines productive-mode orientation of the enzyme at the membrane surface (2004) J. Mol. Biol., 344 (1), pp. 71-89Qin, S., Pande, A.H., Nemec, K.N., He, X., Tatulian, S.A., Evidence for the regulatory role of the N-terminal helix of secretory phospholipase A(2) from studies on native and chimeric proteins (2005) J. Biol. Chem., 280 (44), pp. 36773-36783Rotelli, A.E., Guardia, T., Juárez, A.O., de la Rocha, N.E., Pelzer, L.E., Comparative study of flavonoids in experimental models of inflammation (2003) Pharmacol. Res., 48, pp. 601-606Schagger, H., von Jagow, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa (1987) Anal. Biochem., 1, pp. 368-379Soares, A.M., Andrião-Escarso, S.H., Bortoleto, R.K., Rodrigues-Simioni, L., Arni, R.K., Ward, R.J., Gutiérrez, J.M., Giglio, J.R., Dissociation of enzymatic and pharmacological properties of piratoxins-I and -III, two myotoxic phospholipases A2 from Bothrops pirajai snake venom (2001) Arch. Biochem. Biophys., 387 (2), pp. 188-196Toyama, M.H., Soares, A.M., Vieira, C.A., Novello, J.C., Oliveira, B., Giglio, J.R., Marangoni, S., Amino acid sequence of piratoxin-I, a myotoxin from Bothrops pirajai snake venom, and its biological activity after alkylation with p-bromophenacyl bromide (1998) J. Protein Chem., 17 (7), pp. 713-718Toyama, M.H., Carneiro, E.M., Marangoni, S., Barbosa, R.L., Corso, G., Boschero, A.C., Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets (2000) Biochim. Biophys. Acta, 1474, pp. 56-60Toyama, M.H., Soares, A.M., Wen-Hwa, L., Polikarpov, I., Giglio, J.R., Marangoni, S., Amino acid sequence of piratoxin-II, a myotoxic lys49 phospholipase A(2) homologue from Bothrops pirajai venom (2000) Biochimie, 82 (3), pp. 245-250Toyama, M.H., de Oliveira, D.G., Beriam, L.O., Novello, J.C., Rodrigues-Simioni, L., Marangoni, S., Structural, enzymatic and biological properties of new PLA(2) isoform from Crotalus durissus terrificus venom (2003) Toxicon, 41, pp. 1033-1038Toyama, M.H., Toyama, D.O., Joazeiro, P.P., Carneiro, E.M., Beriam, L.O.S., Marangoni, S., Boschero, A.C., Biological and structural characterization of a new PLA(2) from the Crotalus durissus collilineatus venom (2005) Protein J., 24, pp. 103-112Toyama, D.O., Marangoni, S., Diz-Filho, E.B., Oliveira, S.C., Toyama, M.H., Effect of umbelliferone (7-hydroxycoumarin, 7-HOC) on the enzymatic, edematogenic and necrotic activities of secretory phospholipase A2 (sPLA2) isolated from Crotalus durissus collilineatus venom (2009) Toxicon, 53 (4), pp. 417-426Vincent, J.E., Zijlstra, F.J., Biphasic effects of phospholipase A2 on platelet aggregation. Effect of prostaglandin synthesis inhibitors and essential fatty acid deficiency (1976) Prostaglandins, 12 (6), pp. 971-979Vishwanath, B.S., Fawzy, A.A., Franson, R.C., Edema-inducing activity of phospholipase A2 purified from human synovial fluid and inhibition by aristolochic acid (1988) Inflammation, 12, pp. 549-56

    Effects Of A Lectin-like Protein Isolated From Acacia Farnesiana Seeds On Phytopathogenic Bacterial Strains And Root-knot Nematode

    No full text
    Acacia farnesiana lectin-like protein (AFAL) showed bacterioestatic effects against . Xanthomonas axonopodis pv. . passiflorae (Gram-negative) and . Clavibacter michiganensis michiganensis (Gram-positive), with the latter being more sensitive. This effect is probably due to the ability of AFAL to interact with the bacterial cell wall where we observed that AFAL induced macroscopic change. The maximum bacterial growth inhibition was approximately 78% when incubated with Gram-negative strains, and as high as 92% percent for the Gram-positive one. The antibacterial effect of flavonoids (rutin, quercetin and morin) was also observed using low concentrations against both bacterial strains. Prior incubation of both with AFAL at high concentrations increases the inhibitory effect of flavonoids on bacterial growth. The potential use of AFAL as a control agent against the root-knot nematode . Meloidogyne incognita was investigated as well, showing anti-nematode properties involving both egg hatching and motility. In the juvenile second-stage, AFAL showed reduction in larval mobility when measured against a control group. The results suggest that AFAL is effective against . M. incognita and could be used as a component of integrated pest management programs. These data also suggest that lectins probably play a role in plant defense not only against invertebrate phytopathogens, herbivores and fungi but also against bacteria. © 2012 Elsevier Inc.10311522McDevitt, D., François, P., Vaudaux, P., Foster, T.J., Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus (1994) Molecular Microbiology, 11, pp. 237-248Wu, H., Fives-Taylor, P.M., Molecular strategies for fimbrial expression and assembly (2001) Critical Reviews Oral Biology & Medicine, 12, pp. 101-115Calderon, A.M., Buck, G., Doyle, R.J., Lectins, Biology, Biochemistry, Clinical Biochemistry (1997), Lectins, Biology, Biochemistry, Clinical Biochemistry, including Proceedings from the 17th International Lectin Meeting in Würzburg (Van Driessche E, Beeckmans S, Bøg-Hansen TC, eds) Lemchesvej, DenmarkGleason, M.L., Braun, E.J., Carlton, W.M., Peterson, R.H., Survival and dissemination of Clavibacter michiganensis subsp. michiganensis in tomatoes (1991) Phytopathology, 81, pp. 1519-1523Hadas, R., Kritzman, G., Klietman, F., Gefen, T., Manulis, S., Comparison of extraction procedures and determination of the detection threshold for Clavibacter michiganensis ssp. michiganensis in tomato seeds (2005) Plant Pathology, 54, pp. 643-664Holguín-Peña, R.J., Vázquez-Juárez, R.C., Bacterial canker caused by Clavibacter michiganensis subsp. michiganensis on tomato in the Baja California Peninsula of Mexico (2006) Plant Disease, 90, p. 1550Soylu, S., Baysal, O., Soylu, E.M., Induction of disease resistance by the plant activator, acibenzolar-S-methyl (ASM), against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato seedlings (2003) Plant Science, 165, pp. 1069-1075Ripoll, C., Favery, B., Lecomte, P., Van Damme, E.J.M., Peumans, W.J., Abad, P., Jouanin, L., Evaluation of the ability of lectin from snowdrop (Galanthus nivalis) to protect plants against root-knot nematodes (2003) Plant Science, 164, pp. 517-523Bird, D.M., Koltai, H., Plant parasitic nematodes: habitats, hormones, and horizontally-acquired genes: plant communication with other organisms: chemicals are the words (2000) Journal of Plant Growth Regulation, 19, pp. 183-194Tihohod, D., (2000) Nematologia agrícola aplicada, , FUNEP, JaboticabalClé, C., Hill, L.M., Niggeweg, R., Martin, C.R., Guisez, Y., Prinsen, E., Jansen, M.A.K., Modulation of chlorogenic acid biosynthesis in Solanum lycopersicumconsequences for phenolic accumulation and UV-tolerance (2008) Phytochemistry, 69, pp. 2149-2156Nijveldt, R.J., Van Nood, E., Van Hoorn, D.E.C., Boelens, P.G., Van Norren, K., Van Leeuwen, P.A.M., Flavonoids: a review of probable mechanisms of action and potential applications (2001) American Journal of Clinical Nutrition, 74, pp. 418-425Cushnie, T.P., Lamb, A.J., Antimicrobial activity of flavonoids (2005) International Journal of Antimicrobial Agents, 26, pp. 343-356Peumans, W.J., Van Damme, E.J.M., Lectins as plant defense proteins (1995) Plant Physiology, 109, pp. 347-352Nilsson, C., (2007), Lectins: Analytical Technologies, Elsevier, San Diego, USAPando, A.L., Carvalho, D.D., Toyama, M.H., Di Ciero, L., Novello, J.C., Pascholatti, S.F., Morangoni, F., Purification and characterization of a lectin from Crotalaria paulina seeds (2004) The Protein J., 23, pp. 437-444Santi-Gadelha, T., Gadelha, C.A.A., Aragão, K.S., Oliveira, C.C., Mota, M.R.L., Gomes, R.C., Pires, A.F., Cavada, B.S., Purification and biological effects of Araucaria angustifolia (Araucariaceae) seed lectin (2006) Biochemical and Biophysical Research Communications, 350, pp. 1050-1055Delatorre, P., Rocha, B.A.M., Souza, E.P., Oliveira, T.M., Bezerra, G.A., Moreno, F.B.B., Freitas, B.T., Cavada, B.S., Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules (2007) BMC Structural Biology, 7, p. 52Bajaj, M., Soni, G., Singi, C.K., Interaction of pea (Pisum sativum L.) lectins with rhizobial strains (2001) Microbiological Research, 156, pp. 71-74Arias, M.E., Gomes, J.D., Cudmani, N.M., Vattuone, M.A., Isla, M.I., Antibacteril activity of ethanolic and aqueous extracts of Acacia aroma Gill (2004) Ex Hook et Arn, 75, pp. 191-202El Abbouyi, A., Toumi, M., El Hachimi, Y., Jossang, A., In vitro effects of aqueous seeds extract of Acacia cyanophylla on the opsonized zymosan-induced superoxide anions production by rat polymorphonuclear leukocytes (2004) Journal of Ethnopharmacology, 91, pp. 159-165Jayatilake, G.S., Freeberg, D.R., Liu, Z., Richheimer, S.T., Blake, M.E., Bailey, D.T., Haridas, V., Gutterman, J.U., Isolation and structures of avicins D and G: in vitro tumor-inhibitory saponins derived from Acacia victoriae (2003) Journal of National Products, 66, pp. 779-783Sharon, N., Lis, H., (2003) Lectins, , Kluwer Academic Publishers, Dordrecht, NetherlandsSanti-Gadelha, T., Rocha, B.A.M., Oliveira, C.C., Aragão, K.S., Marinho, E.S., Gadelha, C.A.A., Toyama, M.H., Cavada, B.S., Purification of a PHA-like chitin-binding protein from Acacia farnesiana seeds: a time-dependent oligomerization protein (2008) Applied Biochemistry and Biotechnology, 150, pp. 97-111Ainouz, I.L., Sampaio, A.H., Benevides, N.M.B., Freitas, A.L.P., Costa, F.H.F., Carvalho, M.R., Joventino, F.P., Agglutination of enzyme treated erythrocytes by Brazilian marine algae (1992) Botânica Marinha., 35, pp. 475-480Laemmli, U.K., Cleavage of structural protein during the assembly of the head of bacteriophage T 4 (1970) Nature, 227, pp. 680-685Oliveira, D.G., Toyama, M.H., Novello, J.C., Beriam, L.O., Marangoni, S., Structural and functional characterization of basic PLA2 isolated from Crotalus durissus terrificus venom (2002) Journal of Protein Chemistry, 21, pp. 161-168Oliveira, S.C., Fonseca, F.V., Antunes, E., Camargo, E.A., Morganti, R.P., Aparício, R., Toyama, D.O., Toyama, M.H., Modulation of the pharmacological effects of enzymatically-active PLA2 by BTL-2, an isolectin isolated from the Bryothamnion triquetrum red alga (2008) BMC Biochemistry, 9, p. 16Hussey, R.S., Barker, K.R., A comparison of methods of inocula of Meloidogyne spp., including a new technique (1973) Plant Disease Report, 57, pp. 1025-1028Jenkins, W.R., A rapid centrifugal-flotation technique for separating nematodes from soil (1993) Plant Disease Report, 48, pp. 109-117Huang, C.S., Detection of Aphelenchoides besseyi in rice seeds and correlation between seed infection and crop performance (1983) Seedling Science Technology, 11, pp. 691-696Castellòn, R.E.R., Purificação e Caracterização Parcial de uma Nova Proteína de Sementes de Parkia Platycephala Benth com Potencial na Defesa de Plantas (2004), Thesis, Universidade Federal do CearáRádis-baptista, G., Moreno, F.B.M.B., Nogueira, L.L., Martins, A.M.C., Toyama, D.O., Toyama, M.H., Azevedo, W.F., Yamane, T., Crotacetin, a novel snake venom c-type lectin, is homolog of convulxin (2005) Journal of Venom Animal Toxins Incluidng Tropical Diseases, 11, pp. 557-578Banwell, J.G., Howard, R., Cooper, D., Costerton, J.W., Intestinal microbial flora after feeding phytohemagglutinin lectins (Phaseolus vulgaris) to rats (1985) Applied and Environment Microbiology, 50, pp. 68-80Pusztai, A., Bardocz, S., Ewen, S.W., Uses of plant lectins in bioscience and biomedicine (2008) Front Bioscience, 13, pp. 1130-1140Mkandawire, A.B., Mabagala, R.B., Guzmán, P., Gepts, P., Gilbertson, R.L., Genetic diversity and pathogenic variation of common blight bacteria (Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans) suggests pathogen coevolution with the common bean (2004) Phytopathology, 94, pp. 593-603López, R., Asensio, C., Gilbertson, R.L., Phenotypic and genetic diversity in strains of common blight bacteria (Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans) in a secondary center of diversity of the common bean host suggests multiple introduction events (2006) Phytopathology, 96, pp. 1204-1213Guzman-Partida, A.M., Robles-Burgueno, M.R., Ortega-Nieblas, M., Vazquez-Moreno, I., Purification and characterization of complex carbohydrate specific isolectins from wild legume seeds: Acacia constricta is (vinorama) highly homologous to Phaseolus vulgaris lectins (2004) Biochimie, 86, pp. 335-342Brown, M.R., Collier, P.J., Gilbert, P., Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope and batch and continuous culture studies (1990) Antimicrobial Agents and Chemotherapy, 34, pp. 1623-1628Palumbo, E., Deghorain, M., Cocconcelli, P.S., Kleerebezem, M., Geyer, A., Hartung, T., Morath, S., Hols, P., D-alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin (2006) Journal of Bacteriology, 188, pp. 3709-3715Statz, A.R., Park, J.P., Chongsiriwatana, N.P., Barron, A.E., Messersmith, P.B., Surface-immobilised antimicrobial peptoids (2008) Biofouling, 24, pp. 439-448Roy, H., Dare, K., Ibba, M., Adaptation of the bacterial membrane to changing environments using aminoacylated phospholipids (2009) Molecular Microbiology, 71, pp. 547-550Barbosa, P.S., Martins, A.M., Havt, A., Toyama, D.O., Evangelista, J.S., Ferreira, D.P., Joazeiro, P.P., Monteiro, H.S., Renal and antibacterial effects induced by myotoxin I and II isolated from Bothrops jararacussu venom (2005) Toxicon, 46, pp. 376-386Iglesias, C.V., Aparicio, R., Rodrigues-Simioni, L., Camargo, E.A., Antunes, E., Marangoni, S., Toyama, D.O., Toyama, M.H., Effects of morin on snake venom phospholipase A2 (PLA2) (2005) Toxicon, 46, pp. 751-758Kraus, D., Peschel, A., Molecular mechanisms of bacterial resistance to antimicrobial peptides (2006) Current Topics in Microbiology and Immunology, 306, pp. 231-250Mendoza, L., Wilkens, M., Urzúa, A., Antimicrobial study of the resinous exudate and diterpenoids and flavonoids isolated from some Chilean Pseudognaphalium (Asteraceae) (1997) Journal of Ethnopharmacology, 58, pp. 85-88Simões, M., Bennett, R.N., Rosa, E.A.S., Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms (2009) Natural Product Reports, 26, pp. 746-757Cox, S.D., Mann, C.M., Markham, J.L., Bell, H.C., Gustafson, J.E., Warmington, J.R., Wyllie, S.G., The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil) (2000) Journal of Applied Microbiology, 88, pp. 170-176Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristiani, M., Daniele, C., Saija, A., Bisignano, G., Mechanisms of antibacterial action of three monterpenes (2005) Antimicrobial Agents and Chemotherapy., 49, pp. 2474-2478Diarra, M.S., Lacasse, P., Deschênes, E., Grondin, G., Paradis-Bleau, C., Petitclerc, D., Ultrastructural and cytochemical study of cell wall modification by lactoferrin, lactoferricin and penicillin G against Staphylococcus aureus (2003) Journal of Electron Microscopy, 52, pp. 207-215Cowan, M.M., Plant products as antimicrobial agents (1999) Clinical Microbiology Reviews, 12, pp. 564-582Dean, R.A., Kuc, J., Rapid lignifications in response to wounding and infection as a mechanism for induced systemic protection in cucumber (1987) Physiology and Molecular Plant Pathology, 31, pp. 69-81Mihara, R., Barry, K.M., Mohammed, C.L., Mitsunaga, T., Comparison of antifungal and antioxidant activities of Acacia mangium and Acacia auriculiformis heartwood extracts (2005) Journal of Chemical Ecology, 31, pp. 789-804Park, S.N., Boo, Y.C., Flavonoids for protection of cells against chemically active species of oxygen (1991), their extraction from plants, and their use in cosmetics, Fr. Demande, 17Naik, G.H., Priyadarsinik, K., Satau, J.G., Banavalikar, M.M., Sohoni, D.P., Biyani, M., Mohan, H., Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine (2003) Phytochemistry, 63, pp. 97-104Saleem, A., Ahotupa, M., Pihlaya, K., Total phenolics concentration and antioxidant potential of extracts of medicinal plants of Pakistan (2001) Zeitschrift für Naturforschung, 56, pp. 973-978Chang, S.T., Wu, J.H., Wang, S.Y., Kang, P.L., Yang, N.S., Shyur, L.F., Antioxidant activity of extracts from Acacia confusa bark and heartwood (2001) Journal of Agriculture and Food Chemistry, 49, pp. 3420-3424Wu, J.H., Tung, Y.T., Wang, S.Y., Shyur, L.F., Kuo, Y.H., Chang, S.T., Phenolic antioxidants from the heartwood of Acacia confuse (2005) Journal of Agriculture and Food Chemistry, 53, pp. 5917-5921Thalang, V.N., Trakoontivakorn, G., Nakaharak, K., Gassinee, T., Antioxidant activity of some commonly consumed leafty vegetables in Thailand (2001) Jircas Journal, 9, pp. 35-43Salgado, S.M.L., Extratos orgânicos e produtos naturais na eclosão, mobilidade e mortalidade de Meloidogyne exigua (2001), Produtos naturais para o controle de fitonematóides. Thesis, Universidade Federal de LavrasZuckerman, B.M., Hypotheses and possibilities of intervention in nematode chemoresponses (1983) Journal of Nematology, 15, pp. 173-182Ponte, J.J., Cavada, B.S., Silveira-Filho, J., Teste com lectina no controle de Meloidogyne incognita em tomateiro (1996) Fitopatologia Brasileira, 21, pp. 489-491Marban-Mendoza, N., Jeyaprakash, A., Jansson, H.B., Damon, R.A., Zuckerman, B.M., Control of root-knot nematodes on tomato by lectins (1987) Journal of Nematology, 19, pp. 331-33

    Cdna Cloning And 1.75 Å Crystal Structure Determination Of Ppl2, An Endochitinase And N-acetylglucosamine-binding Hemagglutinin From Parkia Platycephala Seeds

    No full text
    Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407 ± 15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed β(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-β-d-glucopyranose units in chitin. The full-length amino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 Å resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (βα)8 barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182. © 2006 The Authors.2731739623974Van Damme, E.J.M., Peumans, W.J., Barre, A., Rougé, P., Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles (1998) Crit Rev Plant Sci, 17, pp. 575-692Gabius, H.-J., Gabius, S., (1997) Glycoscience. Status and Perspectives, , Chapman & Hall, WeinheimDodd, R.B., Drickamer, K., Lectin-like proteins in model organisms: Implications for evolution of carbohydrate-binding activity (2001) Glycobiology, 11, pp. 71-79Rini, J.M., Lectin structure (1995) Annu Rev Biomol Struct, 24, pp. 551-577Weis, W.I., Drickamer, K., Structural basis of lectin-carbohydrate recognition (1996) Annu Rev Biochem, 65, pp. 441-473Elgavish, S., Shaanan, B., Lectin-carbohydrate interactions: Different folds, common recognition principles (1997) Trends Biochem Sci, 22, pp. 462-467Loris, R., Hamelryck, T., Bouckaert, J., Wyns, L., Legume lectin structure (1998) Biochim Biophys Acta, 1383, pp. 9-36Bouckaert, J., Hamelryck, T., Wyns, L., Loris, R., Novel structures of plant lectins and their complexes with carbohydrates (1999) Curr Opin Struct Biol, 9, pp. 572-577Vijayan, M., Chandra, N., Lectins (1999) Curr Opin Struct Biol, 9, pp. 707-714Chervenak, M.C., Toone, E.J., Calorimetric analysis of the binding of lectins with overlapping carbohydrate binding (1995) Biochemistry, 34, pp. 5685-5695Dam, T.K., Cavada, B.S., Grangeiro, T.B., Santos, C.F., De Sousa, F.A.M., Oscarson, S., Brewer, C.F., Diocleinae lectins are a group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates (1998) J Biol Chem, 273, pp. 12082-12088Dam, T.K., Cavada, B.S., Grangeiro, T.B., Santos, C.F., Ceccatto, V.M., De Sousa, F.A.M., Oscarson, S., Brewer, C.F., Thermodynamic binding studies of lectins from the diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides (2000) J Biol Chem, 275, pp. 16119-16126Dam, T.K., Roy, R., Das, S.K., Oscarson, S., Brewer, C.F., Binding of multivalent carbohydrates to concanavalin a and Dioclea grandiflora lectin. Thermodynamic analysis of the 'multivalency effect' (2000) J Biol Chem, 275, pp. 14223-14230Suvachittanont, W., Peutpaiboon, A., Lectin from Parkia speciosa seeds (1992) Phytochemistry, 31, pp. 4065-4070Utarabhand, P., Akkayanont, P., Purification of a lectin from Parkia javanica beans (1995) Phytochemistry, 38, pp. 281-285Cavada, B.S., Madeira, S.V.F., Calvete, J.J., Sousa, L.A.G., Bomfim, L.R., Dantas, A.R., Lopes, M.C., Pinto, V.P.T., Purification, chemical, and immunochemical properties of a new lectin from Mimosoideae (Parkia discolor) (2000) Prep Biochem Biotech, 30, pp. 271-280Cavada, B.S., Santos, C.F., Grangeiro, T.B., Moreira Da Silva, L.I.M., Campos, M.J.O., De Sousa, F.A.M., Calvete, J.J., Isolation and partial characterization of a lectin from Parkia platycephala Benth seeds (1997) Physiol Mol Biol Plant, 3, pp. 109-115Ramos, M.V., Cavada, B.S., Bomfim, L.R., Debray, H., Mazard, A.-M., Calvete, J.J., Grangeiro, T.B., Rougé, P., Interaction of the seed lectin from Parkia platycephala (Mimosoideae) with carbohydrates and complex glycans (1999) Prot Pept Lett, 6, pp. 215-222Mann, K., Farias, C.M., Gallego Del Sol, F.G., Santos, C.F., Grangeiro, T.B., Nagano, C.S., Cavada, B.S., Calvete, J.J., The amino-acid sequence of the glucose/mannose-specific lectin isolated from Parkia platycephala seeds reveals three tandemly arranged jacalin-related domains (2001) Eur J Biochem, 268, pp. 4414-4422Gallego Del Sol, F., Gómez, J., Hoos, C., Nagano, C.S., Cavada, B.S., England, P., Calvete, J.J., Energetics of 5-bromo-4-chloro-3-indolyl-α-D-mannose binding to the Parkia platycephala seed lectin and its use for MAD phasing (2005) Acta Cryst F, 61, pp. 326-331Gallego Del Sol, F., Nagano, C.S., Cavada, B.S., Calvete, J.J., The first crystal structure of a Mimosoideae lectin reveals a novel quaternary arrangement of a widespread domain (2005) J Mol Biol, 353, pp. 574-583Heywood, V.H., (1971) Chemotaxonomy of the Leguminosae, pp. 1-29. , Harborne JB & Boulter D, eds, Academic Press, LondonChrispeels, M.J., Raikhel, N.V., Lectins, lectin genes, and their role in plant defense (1991) Plant Cell, 3, pp. 1-9Wang, X., Ma, Q., Characterization of a jasmonate-regulated wheat protein related to a β-glucosidase-aggregating factor (2005) Plant Physiol Biochem, 43, pp. 185-192Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U., Vad, K., Plant chitinases (1993) Plant J, 3, pp. 31-40Hamel, F., Boivin, R., Tremblay, C., Bellemare, G., Structural and evolutionary relationships among chitinases of flowering plants (1997) J Mol Evol, 44, pp. 614-624Kasprzewska, A., Plant chitinases - Regulation and function (2003) Cell Mol Biol Lett, 8, pp. 809-824Cavada, B.S., Castellón, R.E.R., Vasconcelos, G.G., Rocha, B.A.M., Bezerra, G.A., Debray, H., Delatorre, P., Pinto, V.P.T., Crystallization and preliminary X-ray diffraction analysis of a new chitin-binding protein from Parkia platycephala seeds (2005) Acta Crystallogr F, 61, pp. 841-843Rawitch, A.B., Pollock, H.G., Yang, S.-X., Thyroglobulin glycosylation: Location and nature of the N-linked oligosaccharide units in bovine thyroglobulin (1993) Arch Biochem Biophys, 300, pp. 271-279Hill Jr., H.D., Reynolds, J.A., Hill, R.L., Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin (1977) J Biol Chem, 252, pp. 3791-3798Spiro, R.G., Bhoyroo, D., Structure of the O-glycosidically linked carbohydrate units of fetuin (1974) J Biol Chem, 249, pp. 5704-5717Green, E.D., Adelt, G., Baenziger, J.U., Wilson, S., Van Halbeek, H., The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharide by 500-megahertz1H NMR spectroscopy (1988) J Biol Chem, 263, pp. 18253-18268Rohrer, J.S., Cooper, G.A., Townsend, R.R., Identification, quantitation, and characterization of glycopeptides in reversed-phase HPLC separations of glycoprotein proteolytic digests (1993) Anal Biochem, 212, pp. 7-16Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities (1991) Biochem J, 280, pp. 309-316Jekel, P.A., Hartmann, B.H., Beintema, J.J., The primary structure of hevamine, an enzyme with lysozyme/chitinase activity from Hevea brasiliensis latex (1991) Eur J Biochem, 200, pp. 123-130Van Scheltinga, A.C.T., Kalk, K.H., Beintema, J.J., Dijkstra, B.W., Crystal structures of hevamine, a plant defense protein with chitinase and lysozyme activity, and its complex with an inhibitor (1994) Structure, 2, pp. 1181-1189Chye, M.L., Zhao, K.J., He, Z.M., Ramalingam, S., Fung, K.L., An agglutinating chitinase with two chitin-binding domains confers fungal protection in transgenic potato (2005) Planta, 220, pp. 717-730Tang, C.M., Chye, M.L., Ramalingam, S., Ouyang, S.W., Zhao, K.J., Ubhayasekera, W., Mowbray, S.L., Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea chitinase BjCHI1 (2004) Plant Mol Biol, 56, pp. 285-298Robertus, J.D., Monzingo, A.F., The structure and action of chitinases (1999) EXS, 87, pp. 125-135Kaomek, M., Mizuno, K., Fujimura, T., Sriyotha, P., Cairns, J.R., Cloning, expression, and characterization of an antifungal chitinase from Leucaena leucocephala de Wit (2003) Biosci Biotechnol Biochem, 67, pp. 667-676Hennig, M., Jansonius, J.N., Van Scheltinga, A.C.T., Dijkstra, B.W., Schlesier, B.J., Crystal structure of concanavalin B at 1.65 a resolution. An 'inactivated' chitinase from seeds of Canavalia ensiformis (1995) J Mol Biol, 254, pp. 237-246Van Scheltinga, A.C.T., Hennig, M., Dijkstra, B.W., The 1.8 a ° resolution structure of hevamine, a plant chitinase/lysozyme, and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18 (1996) J Mol Biol, 262, pp. 243-257Lawton, K.A., Beck, J., Potter, S., Ward, E., Ryals, J., Regulation of cucumber class III chitinase gene expression (1994) Mol Plant-Microbe Interact, 7, pp. 48-57Copley, R.R., Barton, G.J., A structural analysis of phosphate and sulphate binding sites in proteins. Estimation of propensities for binding and conservation of phosphate binding sites (1994) J Mol Biol, 242, pp. 321-329Bokma, E., Rozeboom, H.J., Sibbald, M., Dijkstra, B.W., Beintema, J.J., Expression and characterization of active site mutants of hevamine, a chitinase from the rubber tree Hevea brasiliensis (2002) Eur J Biochem, 269, pp. 893-901Pastuszak, I., Drake, R., Elbein, A.D., Kidney N-acetylgalactosamine (GalNAc)-1-phosphate kinase, a new pathway of GalNAc activation (1996) J Biol Chem, 271, pp. 20776-20782Ainouz, I.L., Sampaio, A.H., Benevides, N.M.B., Freitas, A.L.P., Costa, F.H.F., Carvalho, M.R., Pinheirojoventino, F., Agglutination of enzyme treated erythrocytes by Brazilian marine algal extracts (1992) Bot Mar, 35, pp. 475-479Schägger, H., Von Jagow, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa (1987) Anal Biochem, 166, pp. 368-379Henrikson, R.L., Meredith, S.C., Amino acid analysis by reversed-phase high-performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate (1984) Anal Biochem, 136, pp. 65-71Steenkamp, J., Wiid, I., Lourens, A., Van Helden, P., Improved method for DNA extraction from Vitis vinifera (1994) Am J Enol Vitic, 45, pp. 102-106Frohman, M.A., Martin, G.R., Rapid amplification of cDNA ends using nested primers (1989) Techniques, 1, pp. 165-170(1994) Acta Cryst, D50, pp. 760-763. , Collaborative Computational Project Number

    CO2-response function of radiation use efficiency in rice for climate change scenarios

    Get PDF
    The objective of this work was to evaluate a generalized response function to the atmospheric CO2 concentration [f(CO2)] by the radiation use efficiency (RUE) in rice. Experimental data on RUE at different CO2 concentrations were collected from rice trials performed in several locations around the world. RUE data were then normalized, so that all RUE at current CO2 concentration were equal to 1. The response function was obtained by fitting normalized RUE versus CO2 concentration to a Morgan-Mercer-Flodin (MMF) function, and by using Marquardt's method to estimate the model coefficients. Goodness of fit was measured by the standard deviation of the estimated coefficients, the coefficient of determination (R²), and the root mean square error (RMSE). The f(CO2) describes a nonlinear sigmoidal response of RUE in rice, in function of the atmospheric CO2 concentration, which has an ecophysiological background, and, therefore, renders a robust function that can be easily coupled to rice simulation models, besides covering the range of CO2 emissions for the next generation of climate scenarios for the 21st century
    corecore