25,930 research outputs found
Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage
Hypoxic-ischemic encephalopathy (HIE) is a clinical condition in the neonate, resulting from oxygen deprivation around the time of birth. HIE affects 1-5/1000 live births worldwide and is associated with the development of neurological deficits, including cerebral palsy, epilepsy, and cognitive disabilities. Even though the brain is considered as an immune-privileged site, it has innate and adaptive immune response and can produce complement (C) components and antimicrobial peptides (AMPs). Dysregulation of cerebral expression of AMPs and C can exacerbate or ameliorate the inflammatory response within the brain. Brain ischemia triggers a prolonged inflammatory response affecting the progression of injury and secondary energy failure and involves both innate and adaptive immune systems, including immune-competent and non-competent cells. Following injury to the central nervous system (CNS), including neonatal hypoxia-ischemia (HI), resident microglia, and astroglia are the main cells providing immune defense to the brain in a stimulus-dependent manner. They can express and secrete pro-inflammatory cytokines and therefore trigger prolonged inflammation, resulting in neurodegeneration. Microglial cells express and release a wide range of inflammation-associated molecules including several components of the complement system. Complement activation following neonatal HI injury has been reported to contribute to neurodegeneration. Astrocytes can significantly affect the immune response of the CNS under pathological conditions through production and release of pro-inflammatory cytokines and immunomodulatory AMPs. Astrocytes express β-defensins, which can chemoattract and promote maturation of dendritic cells (DC), and can also limit inflammation by controlling the viability of these same DC. This review will focus on the balance of complement components and AMPs within the CNS following neonatal HI injury and the effect of that balance on the subsequent brain damage
Conformal Klein-Gordon equations and quasinormal modes
Using conformal coordinates associated with conformal relativity --
associated with de Sitter spacetime homeomorphic projection into Minkowski
spacetime -- we obtain a conformal Klein-Gordon partial differential equation,
which is intimately related to the production of quasi-normal modes (QNMs)
oscillations, in the context of electromagnetic and/or gravitational
perturbations around, e.g., black holes. While QNMs arise as the solution of a
wave-like equation with a Poschl-Teller potential, here we deduce and
analytically solve a conformal radial d'Alembert-like equation, from which we
derive QNMs formal solutions, in a proposed alternative to more completely
describe QNMs. As a by-product we show that this radial equation can be
identified with a Schrodinger-like equation in which the potential is exactly
the second Poschl-Teller potential, and it can shed some new light on the
investigations concerning QNMs.Comment: 13 pages, 10 figure
Anomalous temperature dependence of the band-gap in Black Phosphorus
Black Phosphorus (BP) has gained renewed attention due to its singular
anisotropic electronic and optical properties that might be exploited for a
wide range of technological applications. In this respect, the thermal
properties are particularly important both to predict its room temperature
operation and to determine its thermoelectric potential. From this point of
view, one of the most spectacular and poorly understood phenomena is, indeed,
the BP temperature-induced band-gap opening: when temperature is increased the
fundamental band-gap increases instead of decreasing. This anomalous thermal
dependence has also been observed, recently, in its monolayer counterpart. In
this work, based on \textit{ab-initio} calculations, we present an explanation
for this long known, and yet not fully explained, effect. We show that it
arises from a combination of harmonic and lattice thermal expansion
contributions, which are, in fact, highly interwined. We clearly narrow down
the mechanisms that cause this gap opening by identifying the peculiar atomic
vibrations that drive the anomaly. The final picture we give explains both the
BP anomalous band-gap opening and the frequency increase with increasing volume
(tension effect).Comment: Published in Nano Letter
- …