17,232 research outputs found

    The Einstein-Hilbert Lagrangian Density in a 2-dimensional Spacetime is an Exact Differential

    Full text link
    Recently Kiriushcheva and Kuzmin claimed to have shown that the Einstein-Hilbert Lagrangian cannot be written in any coordinate gauge as an exact differential in a 2-dimensional spacetime. Since this is contrary to other statements on the subject found in the literature, as e.g., by Deser and Jackiw, Jackiw, Grumiller, Kummer and Vassilevich it is necessary to do decide who has reason. This is done in this paper in a very simply way using the Clifford bundle formalism. In this version we added Section 18 which discusses a recent comment on our paper just posted by Kiriushcheva and Kuzmin.Comment: 11 pages, Misprints in some equations have been corrected; four new references have been added, Section 18 adde

    Bounds on topological Abelian string-vortex and string-cigar from information-entropic measure

    Get PDF
    In this work we obtain bounds on the topological Abelian string-vortex and on the string-cigar, by using a new measure of configurational complexity, known as configurational entropy. In this way, the information-theoretical measure of six-dimensional braneworlds scenarios are capable to probe situations where the parameters responsible for the brane thickness are arbitrary. The so-called configurational entropy (CE) selects the best value of the parameter in the model. This is accomplished by minimizing the CE, namely, by selecting the most appropriate parameters in the model that correspond to the most organized system, based upon the Shannon information theory. This information-theoretical measure of complexity provides a complementary perspective to situations where strictly energy-based arguments are inconclusive. We show that the higher the energy the higher the CE, what shows an important correlation between the energy of the a localized field configuration and its associated entropic measure.Comment: 6 pages, 7 figures, final version to appear in Phys. Lett.

    Lunar subsurface architecture enhanced by artificial biosphere concepts

    Get PDF
    The integration of artificial biosphere technology with subselene architecture can create a life-enhancing, productive habitat that is safe from solar radiation and extreme temperature fluctuations while maximizing resources brought from Earth and derived from lunar regolith. In the short term, the resulting biotectural (biosphere and architectural) designs will not only make the structures more habitable, productive, and manageable, but will ultimately provide the self-sufficiency factors necessary for the mature lunar settlement. From a long-term perspective, this biotecture approach to astronautics and extraterrestrial development (1) helps reduce mass lift requirements, (2) contributes to habitat self-sufficiency, and (3) actualizes at least one philosophy of solar system exploration, which is to exploit nonterrestrial resources in an effort to conserve our natural resources on this planet

    Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strands

    Full text link
    The bias-dependent transport properties of short poly(G)-poly(C) A-DNA strands attached to Au electrodes are investigated with first principles electronic transport methods. By using the non- equilibrium Green's function approach combined with self-interaction corrected density functional theory, we calculate the fully self-consistent coherent I-V curve of various double-strand polymeric DNA fragments. We show that electronic wave-function localization, induced either by the native electrical dipole and/or by the electrostatic disorder originating from the first few water solvation layers, drastically suppresses the magnitude of the elastic conductance of A-DNA oligonucleotides. We then argue that electron transport through DNA is the result of sequence-specific short-range tunneling across a few bases combined with general diffusive/inelastic processes.Comment: 15 pages, 13 figures, 1 tabl

    DNA-psoralen: single-molecule experiments and first principles calculations

    Full text link
    The authors measure the persistence and contour lengths of DNA-psoralen complexes, as a function of psoralen concentration, for intercalated and crosslinked complexes. In both cases, the persistence length monotonically increases until a certain critical concentration is reached, above which it abruptly decreases and remains approximately constant. The contour length of the complexes exhibits no such discontinuous behavior. By fitting the relative increase of the contour length to the neighbor exclusion model, we obtain the exclusion number and the intrinsic intercalating constant of the psoralen-DNA interaction. Ab initio calculations are employed in order to provide an atomistic picture of these experimental findings.Comment: 9 pages, 4 figures in re-print format 3 pages, 4 figures in the published versio

    OGSA/Globus Evaluation for Data Intensive Applications

    Full text link
    We present an architecture of Globus Toolkit 3 based testbed intended for evaluation of applicability of the Open Grid Service Architecture (OGSA) for Data Intensive Applications.Comment: To be published in the proceedings of the XIX International Symposium on Nuclear Electronics and Computing (NEC'2003), Bulgaria, Varna, 15-20 September, 200

    Studies of CMB structure at Dec=40. II: Analysis and cosmological interpretation

    Get PDF
    We present a detailed analysis of the cosmic microwave background structure in the Tenerife Dec=+40 degrees data. The effect of local atmospheric contributions on the derived fluctuation amplitude is considered, resulting in an improved separation of the intrinsic CMB signal from noise. Our analysis demonstrates the existence of common structure in independent data scans at 15 and 33 GHz. For the case of fluctuations described by a Gaussian auto-correlation function, a likelihood analysis of our combined results at 15 and 33 GHz implies an intrinsic rms fluctuation level of 48^{+21}_{-15} uK on a coherence scale of 4 degrees; the equivalent analysis for a Harrison-Zel'dovitch model gives a power spectrum normalisation of Q_{rms-ps} = 22^{+10}_{-6} uK. The fluctuation amplitude is seen to be consistent at the 68% confidence level with that reported for the COBE two-year data for primordial fluctuations described by a power law model with a spectral index in the range 1.0 \le n \le 1.6. This limit favours the large scale CMB anisotropy being dominated by scalar fluctuations rather than tensor modes from a gravitational wave background. The large scale Tenerife and COBE results are considered in conjunction with observational results from medium scale experiments in order to place improved limits on the fluctuation spectral index; we find n=1.10 +/- 0.10 assuming standard CDM with H_{0}=50 kms^{-1}Mpc^{-1}.Comment: 10 pages LaTeX, including 8 PostScript figures. Accepted for publication in MNRA
    • 

    corecore