326 research outputs found

    Noise thermometry applied to thermoelectric measurements in InAs nanowires

    Full text link
    We apply noise thermometry to characterize charge and thermoelectric transport in single InAs nanowires (NWs) at a bath temperature of 4.2 K. Shot noise measurements identify elastic diffusive transport in our NWs with negligible electron-phonon interaction. This enables us to set up a measurement of the diffusion thermopower. Unlike in previous approaches, we make use of a primary electronic noise thermometry to calibrate a thermal bias across the NW. In particular, this enables us to apply a contact heating scheme, which is much more efficient in creating the thermal bias as compared to conventional substrate heating. The measured thermoelectric Seebeck coefficient exhibits strong mesoscopic fluctuations in dependence on the back-gate voltage that is used to tune the NW carrier density. We analyze the transport and thermoelectric data in terms of approximate Mott's thermopower relation and to evaluate a gate-voltage to Fermi energy conversion factor

    Local noise in a diffusive conductor

    Full text link
    The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive and extends primary local measurements towards strongly non-equilibrium regimes.Comment: minor revision, accepted in Scientific Report

    The DICE calibration project: design, characterization, and first results

    Full text link
    We describe the design, operation, and first results of a photometric calibration project, called DICE (Direct Illumination Calibration Experiment), aiming at achieving precise instrumental calibration of optical telescopes. The heart of DICE is an illumination device composed of 24 narrow-spectrum, high-intensity, light-emitting diodes (LED) chosen to cover the ultraviolet-to-near-infrared spectral range. It implements a point-like source placed at a finite distance from the telescope entrance pupil, yielding a flat field illumination that covers the entire field of view of the imager. The purpose of this system is to perform a lightweight routine monitoring of the imager passbands with a precision better than 5 per-mil on the relative passband normalisations and about 3{\AA} on the filter cutoff positions. The light source is calibrated on a spectrophotometric bench. As our fundamental metrology standard, we use a photodiode calibrated at NIST. The radiant intensity of each beam is mapped, and spectra are measured for each LED. All measurements are conducted at temperatures ranging from 0{\deg}C to 25{\deg}C in order to study the temperature dependence of the system. The photometric and spectroscopic measurements are combined into a model that predicts the spectral intensity of the source as a function of temperature. We find that the calibration beams are stable at the 10−410^{-4} level -- after taking the slight temperature dependence of the LED emission properties into account. We show that the spectral intensity of the source can be characterised with a precision of 3{\AA} in wavelength. In flux, we reach an accuracy of about 0.2-0.5% depending on how we understand the off-diagonal terms of the error budget affecting the calibration of the NIST photodiode. With a routine 60-mn calibration program, the apparatus is able to constrain the passbands at the targeted precision levels.Comment: 25 pages, 27 figures, accepted for publication in A&

    A simplified sars-cov-2 pseudovirus neutralization assay

    Get PDF
    COVID-19 is an ongoing pandemic caused by the highly infectious coronavirus SARS-CoV-2 that is engaging worldwide scientific research to find a timely and effective eradication strategy. Great efforts have been put into anti-COVID-19 vaccine generation in an effort to protect the world population and block SARS-CoV-2 spread. To validate the protective efficacy of the vaccination campaign and effectively control the pandemic, it is necessary to quantify the induction of neutralizing antibodies by vaccination, as they have been established to be a correlate of protection. In this work, a SARS-CoV-2 pseudovirus neutralization assay, based on a replication-incompetent lentivirus expressing an adapted form of CoV-2 S protein and an ACE2/TMPRSS2 stably expressing cell line, has been minimized in terms of protocol steps without loss of accuracy. The goal of the present simplified neutralization system is to improve SARS-CoV-2 vaccination campaign by means of an easy and accessible approach to be performed in any medical laboratory, maintaining the sensitivity and quantitative reliability of classical serum neutralization assays. Further, this assay can be easily adapted to different coronavirus variants by simply modifying the pseudotyping vector

    Angiogenesis modifications related with cetuximab plus irinotecan as anticancer treatment in advanced colorectal cancer patients.

    Get PDF
    Introduction: Angiogenesis has been correlated with increased invasion and metastases in a variety of human neoplasms. Inadequate inhibition of the growth of tumor microvessels by anticancer agents may result in treatment failure, rated clinically as progressive or stable disease. We designed this trial to investigate the modification of the vascular endothelial growth factor (VEGF) and interferon-c (IFN-c) in advanced colorectal cancer patients during treatment with a weekly combination of cetuximab plus irinotecan. Materials and methods: Forty-five metastatic colorectal cancer patients were prospectively evaluated for circulating levels of VEGF and IFN-c during the treatment with cetuximab (initial dose of 400 mg/m2 , followed by weekly infusions of 250 mg/m2 ) plus weekly irinotecan (90 mg/m2 ). The circulating levels of the cytokines were assessed at the following time points: just before and at 1, 21, 50 and 92 days after the start of cetuximab plus irinotecan treatment. Results: Basal serum VEGF median levels were significantly decreased just at the first day (after the first treatment infusion (P = 0.016). The VEGF persisted at the following time points reaching the highest statistical significance 92 days after the first infusion (P < 0.0001). On the contrary, IFN-c values showed a statistical significant increase one day after the first infusion (P < 0.0001). This effect persisted 21 days after the treatment start (P = 0.001), but was no more evident at the following time points. Moreover, a linear regression model with variance analysis showed a significant negative correlation between VEGF and IFN-c values 1, 21 and 50 days after the treatment beginning (P = 0.002, 0.001 and 0.047, respectively). Conclusions: This study suggests that a cetuximab may induce a modulation of VEGF circulating levels. The reduction of VEGF serum levels is a sudden and long lasting phenomenon. Moreover, in our study we identified a IFN-c increase, even if the specific role of this behavior remains to be investigated

    Early magnesium reduction in advanced colorectal cancer patients treated with cetuximab plus irinotecan as predictive factor of efficacy and outcome

    Get PDF
    Introduction: Magnesium plays a role in a large number of cellular metabolic reactions. Cetuximab is able to induce hypomagnesemia by interfering with magnesium (Mg2+) transport in the kidney.We designed this trial to investigate if Mg2+ serum level modifications may be related with clinical response andoutcome in advancedcolorectal cancer patients during treatment with cetuximab plus irinotecan. Experimental Design: Sixty-eight heavily pretreatedmetastatic colorectal cancer patients were evaluatedfor Mg2+ serum levels at the following time points: before; 6 hours; and1, 7, 14, 21, 50, and92 days after the start of treatment. Results: Basal Mg2+ median levels were significantly decreased just 7 days after the first anticancer infusion and progressively decreased from the 7th day onward, reaching the highest significance at the last time point (P < 0.0001).Twenty-five patients showeda reduction in median Mg2+ circulating levels of at least 20% within the 3rdweek after the first infusion. Patients with this reduction showed a response rate of 64.0% versus 25.6% in the nonreduced Mg2+ group. The median time to progression was 6.0 versus 3.6 months in the reduced Mg2+ group andin that without reduction, respectively (P < 0.0001). Overall survival was longer in patients with Mg2+ reduction than in those without (10.7 versus 8.9 months). Conclusions: Our results confirm that cetuximab treatment may induce a reduction of Mg2+ circulating levels andoffer the first evidence that Mg2+ reduction may represent a new predictive factor of efficacy in advanced colorectal cancer patients treated with cetuximab plus irinoteca

    Discovering Argumentative Patterns in Energy Polylogues: A Macroscope for Argument Mining

    Get PDF
    A macroscope is proposed and tested here for the discovery of the unique argumentative footprint that characterizes how a collective (e.g., group, online community) manages differences and pursues disagreement through argument in a polylogue. The macroscope addresses broader analytic problems posed by various conceptualizations of large-scale argument, such as fields, spheres, communities, and institutions. The design incorporates a two-tier methodology for detecting argument patterns of the arguments performed in arguing by an interactive collective that produces views, or topographies, of the ways that issues are generated in the making and defending of standpoints. The design premises for the macroscope build on insights about argument patterns from pragma-dialectical theory by incorporating research and theory on disagreement management and the Argumentum Model of Topics. The design reconceptualizes prototypical and stereotypical argument patterns for characterizing large-scale argumentation. A prototype of the macroscope is tested on data drawn from six threads about oil-drilling and fracking from the subreddit Changemyview. The implementation suggests the efficacy of the macroscope’s design and potential for identifying what communities make controversial and how the disagreement space in a polylogue is managed through stereotypical argument patterns in terms of claims/premises, inferential relations, and presentational devices
    • 

    corecore