41 research outputs found

    The efficiency of immobilised glutamate oxidase decreases with surface enzyme loading: an electrostatic effect, and reversal by a polycation significantly enhances biosensor sensitivity

    Get PDF
    The apparent Michaelis constant, KM, for glutamate oxidase (GluOx) immobilised on Pt electrodes increased systematically with enzyme loading. The effect was due, at least in part, to electrostatic repulsion between neighbouring oxidase molecules and the anionic substrate, glutamate (Glu). This understanding has allowed us to increase the Glu sensitivity of GluOx-based amperometric biosensors in the linear response region (100 ± 11 nA cmâ2µMâ1 at pH 7.4; SD, n = 23) by incorporating a polycation (polyethyleneimine, PEI) to counterbalance the polyanionic protein. Differences in the behaviour of glucose biosensors of a similar configuration highlight a limitation of using glucose oxidase as a model enzyme in biosensor design

    Control of the Oxygen Dependence of an Implantable Polymer/Enzyme Composite Biosensor for Glutamate

    Get PDF
    Biosensors for glutamate (Glu) were fabricated from Teflon-coated Pt wire (cylinders and disks), modified with the enzyme glutamate oxidase (GluOx) and electrosynthesized polymer PPD, poly(o-phenylenediamine). The polymer/enzyme layer was deposited in two configurations:  enzyme before polymer (GluOx/PPD) and enzyme after polymer (PPD/GluOx). These four biosensor designs were characterized in terms of response time, limit of detection, Michaelis−Menten parameters for Glu (Jmax and KM(Glu)), sensitivity to Glu in the linear response region, and dependence on oxygen concentration, KM(O2). Analysis showed that the two polymer/enzyme configurations behaved similarly on both cylinders and disks. Although the two geometries showed different behaviors, these differences could be explained in terms of higher enzyme loading density on the disks; in many analyses, the four designs behaved like a single population with a range of GluOx loading. Enzyme loading was the key to controlling the KM(O2) values of these first generation biosensors. The counterintuitive, and beneficial, behavior that biosensors with higher GluOx loading displayed a lower oxygen dependence was explained in terms of the effects of enzyme loading on the affinity of GluOx for its anionic substrate. Some differences between the properties of surface immobilized GluOx and glucose oxidase are highlighted

    The efficiency of immobilised glutamate oxidase decreases with surface enzyme loading: an electrostatic effect, and reversal by a polycation significantly enhances biosensor sensitivity

    Get PDF
    The apparent Michaelis constant, KM, for glutamate oxidase (GluOx) immobilised on Pt electrodes increased systematically with enzyme loading. The effect was due, at least in part, to electrostatic repulsion between neighbouring oxidase molecules and the anionic substrate, glutamate (Glu). This understanding has allowed us to increase the Glu sensitivity of GluOx-based amperometric biosensors in the linear response region (100 ± 11 nA cmâ2µMâ1 at pH 7.4; SD, n = 23) by incorporating a polycation (polyethyleneimine, PEI) to counterbalance the polyanionic protein. Differences in the behaviour of glucose biosensors of a similar configuration highlight a limitation of using glucose oxidase as a model enzyme in biosensor design

    New perspective for an old drug: Can naloxone be considered an antioxidant agent?

    Get PDF
    Background: Experimental evidence indicates that Naloxone (NLX) holds antioxidant properties. The present study aims at verifying the hypothesis that NLX could prevent oxidative stress induced by hydrogen peroxide (H2O2) in PC12 cells.Methods: To investigate the antioxidant effect of NLX, initially, we performed electrochemical experiments by means of platinum-based sensors in a cell-free system. Subsequently, NLX was tested in PC12 cells on H2O2induced overproduction of intracellular levels of reactive-oxygen-species (ROS), apoptosis, modification of cells' cycle distribution and damage of cells' plasma membrane.Results: This study reveals that NLX counteracts intracellular ROS production, reduces H2O2-induced apoptosis levels, and prevents the oxidative damage-dependent increases of the percentage of cells in G2/M phase. Likewise, NLX protects PC12 cells from H2O2- induced oxidative damage, by preventing the lactate dehydrogenase (LDH) release. Moreover, electrochemical experiments confirmed the antioxidant properties of NLX.Conclusion: Overall, these findings provide a starting point for studying further the protective effects of NLX on oxidative stress

    Simultaneous wireless and high-resolution detection of nucleus accumbens shell ethanol concentrations and free motion of rats upon voluntary ethanol intake

    Get PDF
    Highly sensitive detection of ethanol concentrations in discrete brain regions of rats voluntarily accessing ethanol, with high temporal resolution, would represent a source of greatly desirable data in studies devoted to understanding the kinetics of the neurobiological basis of ethanol's ability to impact behavior. In the present study, we present a series of experiments aiming to validate and apply an original high-tech implantable device, consisting of the coupling, for the first time, of an amperometric biosensor for brain ethanol detection, with a sensor for detecting the microvibrations of the animal. This device allows the real-time comparison between the ethanol intake, its cerebral concentrations, and their effect on the motion when the animal is in the condition of voluntary drinking. To this end, we assessed in vitro the efficiency of three different biosensor designs loading diverse alcohol oxidase enzymes (AOx) obtained from three different AOx-donor strains: Hansenula polymorpha, Candida boidinii, and Pichia pastoris. In vitro data disclosed that the devices loading H. polymorpha and C. boidinii were similarly efficient (respectively, linear region slope [LRS]: 1.98 ± 0.07 and 1.38 ± 0.04 nA/mM) but significantly less than the P. pastoris-loaded one (LRS: 7.57 ± 0.12 nA/mM). The in vivo results indicate that this last biosensor design detected the rise of ethanol in the nucleus accumbens shell (AcbSh) after 15 minutes of voluntary 10% ethanol solution intake. At the same time, the microvibration sensor detected a significant increase in the rat's motion signal. Notably, both the biosensor and microvibration sensor described similar and parallel time-dependent U-shaped curves, thus providing a highly sensitive and time-locked high-resolution detection of the neurochemical and behavioral kinetics upon voluntary ethanol intake. The results overall indicate that such a dual telemetry unit represents a powerful device which, implanted in different brain areas, may boost further investigations on the neurobiological mechanisms that underlie ethanol-induced motor activity and reward

    Real-Time Monitoring of Brain Tissue Oxygen Using a Miniaturized Biotelemetric Device Implanted in Freely Moving Rats

    Get PDF
    A miniaturized biotelemetric device for the amperometric detection of brain tissue oxygen is presented. The new system, derived from a previous design, has been coupled with a carbon microsensor for the real-time detection of dissolved O(2) in the striatum of freely moving rats. The implantable device consists of a single-supply sensor driver, a current-to-voltage converter, a microcontroller, and a miniaturized data transmitter. The oxygen current is converted to a digital value by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC). The digital data is sent to a personal computer using a six-byte packet protocol by means of a miniaturized 434 MHz amplitude modulation (AM) transmitter. The receiver unit is connected to a personal computer (PC) via a universal serial bus. Custom developed software allows the PC to store and plot received data. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption, and good linear response in the nanoampere current range. The in vivo results confirmed previously published observations on oxygen dynamics in the striatum of freely moving rats. The system serves as a rapid and reliable model for studying the effects of different drugs on brain oxygen and brain blood flow and it is suited to work with direct-reduction sensors or O(2)-consuming biosensors

    LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization

    Get PDF
    The leucine-rich repeat kinase 2 (LRRK2) gene was found to play a role in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 encodes a large multi-domain protein that is expressed in different tissues. To date, the physiological and pathological functions of LRRK2 are not clearly defined. In this study we have explored the role of LRRK2 in controlling vesicle trafficking in different cellular or animal models and using various readouts. In neuronal cells, the presence of LRRK2(G2019S) pathological mutant determines increased extracellular dopamine levels either under basal conditions or upon nicotine stimulation. Moreover, mutant LRRK2 affects the levels of dopamine receptor D1 on the membrane surface in neuronal cells or animal models. Ultrastructural analysis of PC12-derived cells expressing mutant LRRK2(G2019S) shows an altered intracellular vesicle distribution. Taken together, our results point to the key role of LRRK2 to control vesicle trafficking in neuronal cells

    Designing sensitive and selective polymer/enzyme composite biosensors for brain monitoring in vivo

    Get PDF
    Amperometric polymer/enzyme composite (PEC) biosensors, incorporating a poly(o-phenylenediamine) ultra-thin permselective barrier, possess a variety of characteristics that make them suitable for monitoring brain energy and neurotransmitter dynamics in vivo. This review highlights PEC sensitivity and selectivity parameters, which allow development of the basic design in a systematic way in order to improve their performance and to diversify the analyte range of these novel probes of brain function

    Evidence for functional CB1 cannabinoid receptor expressed in the rat thyroid

    No full text
    Objective: Previous reports have shown that the Δ9-tetrahydrocannabinol (Δ9TCH), the major psychoactive cannabinoid components of marijuana, is unable to inhibit thyroid hormonal activity. The aim of this study was to characterize the CB1 functional expression in the rat thyroid by a multi-methods approach. Methods and Results: RT-PCR was used to detect the mRNA expression of the CB1 cannabinoid receptor (17.8 2±4.0% of the normalizing reference gene β2 microglobulin), as well as the expression of the endocannabinoid hydrolyzing enzyme, fatty acid amide hydrolase (46.9±4.3% of β2 microglobulin), in the rat thyroid gland. The CB1-encoded protein was detected in its glycosylated form (63 kDa) by Western blot, employing a polyclonal antibody, while CB1 immunohistochemical localization showed an intracellular positive staining in both follicular and parafollicular cells. In addition, a 30% decrease in serum levels of both 3,5,3′ tri-iodothyronine (T3) and thyroxine (T4) was detected 4 h after the administration of the synthetic cannabinoid receptor agonist, WIN 55,212-2 (10mg/kg i.p.). These effects were antagonized by pretreatment with the CB1 antagonist SR 141716A (3 mg/kg i.p.); thyrotrophin levels were unaffected by both treatments. Conclusion: These data indicate that functional CB1 receptors which are able to modulate the release of T3 and T4 are expressed in the rat thyroid, and suggest a possible role of cannabinoids in the regulation of rat thyroid hormonal activity
    corecore