18,775 research outputs found
The Dipole Anisotropy of the First All-Sky X-ray Cluster Sample
We combine the recently published CIZA galaxy cluster catalogue with the
XBACs cluster sample to produce the first all-sky catalogue of X-ray clusters
in order to examine the origins of the Local Group's peculiar velocity without
the use of reconstruction methods to fill the traditional Zone of Avoidance.
The advantages of this approach are (i) X-ray emitting clusters tend to trace
the deepest potential wells and therefore have the greatest effect on the
dynamics of the Local Group and (ii) our all-sky sample provides data for
nearly a quarter of the sky that is largely incomplete in optical cluster
catalogues. We find that the direction of the Local Group's peculiar velocity
is well aligned with the CMB as early as the Great Attractor region 40 h^-1 Mpc
away, but that the amplitude of its dipole motion is largely set between 140
and 160 h^-1 Mpc. Unlike previous studies using galaxy samples, we find that
without Virgo included, roughly ~70% of our dipole signal comes from mass
concentrations at large distances (>60 h^-1 Mpc) and does not flatten,
indicating isotropy in the cluster distribution, until at least 160 h^-1 Mpc.
We also present a detailed discussion of our dipole profile, linking observed
features to the structures and superclusters that produce them. We find that
most of the dipole signal can be attributed to the Shapley supercluster
centered at about 150 h^-1 Mpc and a handful of very massive individual
clusters, some of which are newly discovered and lie well in the Zone of
Avoidance.Comment: 15 Pages, 9 Figures. Accepted by Ap
The Power Spectrum of the PSC Redshift Survey
We measure the redshift-space power spectrum P(k) for the recently completed
IRAS Point Source Catalogue (PSC) redshift survey, which contains 14500
galaxies over 84% of the sky with 60 micron flux >= 0.6 Jansky. Comparison with
simulations shows that our estimated errors on P(k) are realistic, and that
systematic errors due to the finite survey volume are small for wavenumbers k
>~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between
those of the earlier QDOT and 1.2 Jansky surveys, but with considerably smaller
error bars; it falls slightly more steeply to smaller scales. We have fitted
families of CDM-like models using the Peacock-Dodds formula for non-linear
evolution; the results are somewhat sensitive to the assumed small-scale
velocity dispersion \sigma_V. Assuming a realistic \sigma_V \approx 300 km/s
yields a shape parameter \Gamma ~ 0.25 and normalisation b \sigma_8 ~ 0.75; if
\sigma_V is as high as 600 km/s then \Gamma = 0.5 is only marginally excluded.
There is little evidence for any `preferred scale' in the power spectrum or
non-Gaussian behaviour in the distribution of large-scale power.Comment: Latex, uses mn.sty, 14 pages including 11 Postscript figures.
Accepted by MNRA
Geometry of the extreme Kerr black holes
Geometrical properties of the extreme Kerr black holes in the topological
sectors of nonextreme and extreme configurations are studied. We find that the
Euler characteristic plays an essential role to distinguish these two kinds of
extreme black holes. The relationship between the geometrical properties and
the intrinsic thermodynamics are investigated.Comment: Latex version, 10 page
Geometry and topology of two kinds of extreme Reissner-Nordstrm-anti-de Sitter black holes
Different geometrical and topological properties have been shown for two
kinds of extreme Reissner-Nordstrm-anti-de Sitter black holes. The
relationship between the geometrical properties and the intrinsic
thermodynamical properties has been made explicit.Comment: Latex, 12 pages, 4 figure
Zeno Dynamics in Quantum Statistical Mechanics
We study the quantum Zeno effect in quantum statistical mechanics within the
operator algebraic framework. We formulate a condition for the appearance of
the effect in W*-dynamical systems, in terms of the short-time behaviour of the
dynamics. Examples of quantum spin systems show that this condition can be
effectively applied to quantum statistical mechanical models. Further, we
derive an explicit form of the Zeno generator, and use it to construct Gibbs
equilibrium states for the Zeno dynamics. As a concrete example, we consider
the X-Y model, for which we show that a frequent measurement at a microscopic
level, e.g. a single lattice site, can produce a macroscopic effect in changing
the global equilibrium.Comment: 15 pages, AMSLaTeX; typos corrected, references updated and added,
acknowledgements added, style polished; revised version contains corrections
from published corrigend
Entropy of Quantum Fields for Nonextreme Black Holes in the Extreme Limit
Nonextreme black hole in a cavity within the framework of the canonical or
grand canonical ensemble can approach the extreme limit with a finite
temperature measured on a boundary located at a finite proper distance from the
horizon. In spite of this finite temperature, it is shown that the one-loop
contribution of quantum fields to the thermodynamic entropy due
to equilibrium Hawking radiation vanishes in the limit under consideration. The
same is true for the finite temperature version of the Bertotti-Robinson
spacetime into which a classical Reissner-Nordstr\"{o}m black hole turns in the
extreme limit. The result is attributed to the nature of a horizon
for the Bertotti-Robinson spacetime.Comment: 11 pages, ReVTeX, no figures. New references added, discussion
expanded, presentation and English improved. Accepted for publication in
Phys. Rev.
Photon rockets and the Robinson-Trautman geometries
We point out the relation between the photon rocket spacetimes and the
Robinson Trautman geometries. This allows a discussion of the issues related to
the distinction between the gravitational and matter energy radiation that
appear in these metrics in a more geometrical way, taking full advantage of
their asymptotic properties at null infinity to separate the Weyl and Ricci
radiations, and to clearly establish their gravitational energy content. We
also give the exact solution for the generalized photon rockets.Comment: 7 pages, no figures, LaTeX2
Delivering holistic low level support to intellectually able autistic adults: Lessons from an advocacy, information and mentoring service
There are many intellectually able autistic adults who would like to have a better quality of life but who struggle to access advice and support from traditional services. This situation leads to emotional distress and poor outcomes for these individuals and their families and society generally. So services such as the Leeds AIM (Advocacy, Information and Mentoring) service described in this paper have great potential in enhancing the lives of this group and in educating mainstream services on how advice and support might be adjusted to allow better access. In addition, creating good spaces for autistic adults offers opportunities for social contact and friendships with like-minded peers both within and outside the servic
Supra-oscillatory critical temperature dependence of Nb-Ho bilayers
We investigate the critical temperature Tc of a thin s-wave superconductor
(Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function
of the Ho layer thickness, we observe multiple oscillations of Tc superimposed
on a slow decay, that we attribute to the influence of the Ho on the Nb
proximity effect. Because of Ho inhomogeneous magnetization, singlet and
triplet pair correlations are present in the bilayers. We take both into
consideration when solving the self consistent Bogoliubov-de Gennes equations,
and we observe a reasonable agreement. We also observe non-trivial transitions
into the superconducting state, the zero resistance state being attained after
two successive transitions which appear to be associated with the magnetic
structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5
figure
- …