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Quantum Zeno Effect: Evolution Impeded by Measurement

Prepare the system in the initial state Φi and assume Hamiltonian evolution. Then, the
short-time behavior is quadratic:

P
(1)
i (t) = |〈Φi , exp(−itH/~)Φi〉|

2
≈ 1 − (∆H)2t2/~

2, where

(∆H)2 =
〈
Φi , H2Φi

〉
− 〈Φi , HΦi〉

2
.

Perform measurements of Φi at times t/N, 2t/N . . . , t, modelled by E = |Φi〉〈Φi|.
Then

P
(N)
i (t) =

[
P

(1)
i (t/N)

]N
≈

(
1 − k2t2

N2

)N N large
≈ e−k2t2/N N→∞

−→ 1.

Experiments:

(1990 Itano et al.) Transitions in 9Be+.
(1992 Inagaki et al.) Thought experiment with neutron spins.

(2001 Wunderlich et al.) Transitions in 172Yb+.
Reviews:

H Nakazato, M Namiki, S Pascazio (1996) Internat. J. Modern Phys. B 10 247.
M A B Whitaker (2000) Progress in Quantum Electronics 24 1-106.
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Example: Quantum Zeno Tomography

A Mach–Zehnder interferometer can be used to detect the presence of a
black sample (τ = 0), without absorbing the probing particle, if it is
prepared to be in the Zeno channel (Z), and detected after L rounds in
the interferometer, in the limit L → ∞, see P Facchi et al. (2002)
Phys. Rev. A 66 012110 (pictures courtesy of S. Pascazio).
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Zeno Dynamics in Quantum Mechanics

With U = eitH , H semibounded, E a projection on a separable Hilbert space H:
Does

W (t)
def
= s-lim

n→∞
Fn(t), where Fn(t)

def
=

[
EU(t/n)E

]n
,

form a strongly continuous unitary group on a Zeno subspace ⊂ EH? That is,

has the Zeno dynamics W (t) a self-adjoint generator B = EB = BE = EBE?

(1977 Misra & Sudarshan): Yes, if the Fn converge at all! (+ technical conditions)

The limit n → ∞ is unphysical, since the duration of the measurement is always > 0,
or would require an infinite amount of energy, due to time/energy uncertainty
[A K Pati (1996) Phys. Lett. A 215 7-13].

Yet, it is of conceptual interest:
It is indicative for the appearance of the Zeno effect for finite n in models.
Allows to identify the Zeno subspace to which the evolution will be
(approximately) confined.
The Zeno dynamics is identified as ordinary quantum dynamics with boundary
conditions [Facchi, Pascazio, Scardicchio, Schulman (2001) Phys. Rev. A 65].
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Algebraic Setting of Quantum Statistical Mechanics

The algebra of observables A (a C∗- or W ∗-algebra with ).
A state ω on A (faithful and normal), inducing the

GNS-representation πω on a Hilbert space H, such that ω(·) = 〈Ω , πω(·)Ω〉.
(Ω is cyclic and separating for πω(A).)

The von Neumann algebra A
def
= πω(A)′′ = πω(A)

w
.

The automorphic evolution (t, A) 3 ×A 7−→ τt(A)
def
= U(t)AU(t)∗ ∈ A,

covariantly implemented by a strongly continuous, unitary group U(t) on H.

The KMS condition for equilibrium states:
ω is called (τ, β)-KMS state , if the functions t 7−→ ω(Aτt(B)) extend
analytically to the strip 0 < Im t < β, for all A, B ∈ A, and

ω(Aτt+iβ(B)) = ω(τt(B)A).

β > 0 is the inverse temperature . Paradigm: Gibbs states

ωβ(A)
def
=

TrH
(
e−βHA

)

TrH
(
e−βH

) , for A ∈ A, dimH < ∞.
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Misra & Sudarshan’s Theorem in QSM

Theorem. Let A, H, U , Ω be as above, E ∈ A a projection. Assume that
i) the following limits exist for all A ∈ A:

W (t)AΩ
def
= lim

n→∞
Fn(t)

def
= lim

n→∞

[
EU(t/n)E

]n
AΩ and

W (t + iβ/2)AΩ
def
= lim

n→∞

[
EU((t + iβ/2)/n)E

]n
AΩ.

ii) For t ∈ , W (t) is weakly continuous, and w-limt→0 W (t) = E.

Let AE
def
= EAE be the reduced algebra and HE

def
= AEΩ the Zeno subspace .

Then
W (t) is a strongly continuous group of unitary operators on HE .

The action ×AE 3 (t, AE) 7−→ τE
t (A)

def
= W (t)AEW (t)∗ ∈ AE is an

automorphism group of AE .

The vectors W (z)AEΩ, AE ∈ AE , extend analytically to the strip
0 < Im z < β/2 and are continuous on its boundary.

The proof follows [B Misra, E C G Sudarshan (1977) J. Math. Phys. 18] using complex
analysis. Differences: Holomorpy in a strip not in the upper halfplane, and U(z) are
unbounded (but with nice common core AΩ).
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Differences: Holomorpy in a strip not in the upper halfplane, and U(z) are
unbounded (but with nice common core AΩ).
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automorphism group of AE .
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Comparison of Results by Analyticity Domains

Sectorial Semigroups (Kato 1978): For semigroups e−zA, holomorphic in a
sector Σ =

{
3 z 6= 0

∣∣ |arg z| < θ, 0 < θ ≤ π/2
}

, the Zeno limit always exists
in the interior of Σ, for every orthogonal projection E on the Hilbert space.

Quantum Mechanics (Misra/Sudarshan): In this case, one needs the Zeno limit
on the boundary of the upper halfplane, where U(z) = eizH is holomorphic. The
above result only guarantees it for Im z > 0.

Quantum Statistical Mechanics (AUS): The Zeno limit is needed on the
boundary of a strip in . No sectorial result can be used.
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An Effective Condition for Zeno Dynamics

Insertion of = E⊥ + E into F1(t) = EU(t)E yields

F1(t) = EU(t/2)(E⊥ + E)U(t/2)E = F2(t) + (EU(t/2)E⊥)(E⊥U(t/2)E).

The asymptotic Zeno condition :
∥∥E⊥U(t)E

∥∥ = O(t), as t −→ 0. (AZC)

(precisely:
∥∥E⊥U(ζ)EAΩ

∥∥ = C‖A‖ζ for ζ , Im ζ ≥ 0, and |ζ| < r0 for a fixed r0 > 0.)
Iterating the above calculation, one estimates

∥∥(
Fm(t) − Fnm(t)

)
Φ

∥∥, Φ ∈ H, and
using the triangle inequality it follows from (AZC), for m > n large enough,

∥∥(
Fn(t) − Fm(t)

)
Φ

∥∥ ≤
C‖Φ‖t2

n
.

=⇒ The Fn(t), t ∈ , form a strong Cauchy sequence.

=⇒ Fn(t) converges strongly to W (t).

=⇒ The convergence is uniform for t ∈ K, K b compact.

=⇒ W (t) is strongly continuous for t in compacts.

=⇒ W (0) = E (⇐= Fn(0) = E, ∀n).

=⇒ W (ζ)AΩ, A ∈ A, exists for 0 ≤ Im ζ ≤ β/2, is holomorphic in the interior and
continuous on the boundary.
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An Existence Theorem for Zeno Dynamics

Theorem. Let (A, τ, ω, β > 0, πω,H, Ω, U, E) as above.
Assume that (U, E) satisfies (AZC) for A:

∥∥E⊥U(ζ)EAΩ
∥∥ = C · ‖A‖ · ζ

is valid for ζ with |ζ| < r0 for some fixed r0 > 0 and Im ζ ≥ 0. Then

i) the strong operator limits W (t)
def
= s-limn→∞

[
EU(t/n)E

]n
exist,

ii) form a strongly continuous group of unitary operators on the Zeno subspace
HE

def
= AEΩ

def
= EAEΩ ⊂ EH,

iii) and the group W (t) induces an automorphism group τE of AE .

iv) The vectors W (z)AEΩ, AE ∈ AE , extend analytically to the strip
0 < Im z < β/2 and are continuous on its boundary.

The (AZC) renders applicable the methods of perturbation theory!
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Example: Non-Return to Equilibrium

Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

Let A be asymptotically abelian , i.e., ‖[A, τt(B)]‖
|t|→∞
−→ 0, A, B ∈ A.

Let P ∈ A be a bounded perturbation, analytic for τ . Then,
for every (τP , β)-KMS state ωP , the limits ω±

def
= lim

t→±∞
ωP ◦ τt, are (τ, β)-KMS states.

Assume common, covariant implementations U , UP of τ , τP on H (loc. cit. Thm. 1).
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Example: Domains of Quantum Spin Systems 1/2

Context: A lattice def
= d, local Hilbert spaces HX

def
=

⊗
x∈X

Hx, dimHx = D < ∞;

A interaction Φ: ⊃ X 7→ A(X) ⊂ B(HX) induces local Hamiltonian dynamics

HΦ(Λ)
def
=

∑

X⊂Λ

Φ(X), UΛ(t)
def
= eitHΦ(Λ), for Λ b bounded.

For Λ ⊂ Λ′ b the local surface interaction is

WΦ(Λ; Λ′)
def
=

∑{
Φ(X)

∣∣ X ⊂ Λ′, X ∩ Λ 6= ∅, X ∩ Λ′ \ Λ 6= ∅
}
.

It induces a decomposition of the Hamilonian

HΦ(Λ′) = HΦ(Λ′ \ Λ) + HΦ(Λ) + WΦ(Λ; Λ′), such that
[
HΦ(Λ′ \ Λ), HΦ(Λ)

]
= 0.

From perturbation theory follows the uniform estimate

UΛ′(t) = UΛ′\Λ(t)UΛ(t) +

∫ t

0

UΛ′\Λ(τ)UΛ(τ)WΦ(Λ; Λ′)dτ + O(t2). (†)
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Example: Domains of Quantum Spin Systems 2/2

Choose an arbitrary vector state ΦΛ ∈ HΛ. Let ϕΛ be the associated pure state.
Define the projector EϕΛ;Λ′

def
= Λ′\Λ ⊗ PΦΛ , on HΛ′ = HΛ′\Λ ⊗HΛ,
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Explicit Form of the Zeno Generator

Proposition. (AZC) =⇒ UE(t)
def
= eitEHE = lim

n→∞

[
Eeit/nHE

]n def
= W (t) on HE .

Sketch of proof: Let ΨE ∈ AEΩ be analytic for H , and assume from now on that those
vectors form a dense set in HE (excludes pathologies).
By a power series expansion one gets for σ, τ small enough

∥∥(
UE(τ) − EU(τ)E

)
UE(σ)ΨE

∥∥ ≤ τ2 · CΨE ,σ < ∞.

‖Fn(t)ΨE − UE(t)ΨE‖ =
∥∥[

EU(t/n)E
]n

ΨE −
[
EUE(t/n)E

]n
ΨE

∥∥

≤
n∑

i=1

∥∥∥
{[

EU(t/n)E
]n−i(

EU(t/n)E − EUE(t/n)E
)[

EUE(t/n)E
]i−1

}
ΨE

∥∥∥

≤
n∑

i=1

∥∥(
UE(t/n) − EU(t/n)E

)
UE(t(i − 1)/n)ΨE

∥∥

≤

n∑

i=1

(
t

n

)2

· sup
|σ|≤|t|

CΨE,σ =
t2C ′

ΨE,t

n
=⇒ W (t)ΨE = UE(t)ΨE . �
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A Result by Exner and Ichinose

In the QM case (H separable, H self-adjoint & semibounded, E orthogonal projection),
a recent result (P Exner, T Ichinose math-ph/0302060) uses properties of the Zeno
generator as a criterion for the existence of Zeno dynamics.

Let HE
def
= (H1/2E)∗(H1/2E) be the self-adjoint operator associated with the quadratic

form H1/2E on the form domain D(H1/2E). HE is a self-adjoint extension of the
(generally non-closed) operator EHE. HE is defined, and acts nontrivially, on a closed
subspace of EH.

Theorem. If HE is densely defined on the whole space H then

s-lim
n→∞

[
Ee−itH/nE

]n

= s-lim
n→∞

[
Ee−itH/n

]n

= s-lim
n→∞

[
e−itH/nE

]n

= e−itHEE

uniformly on every compact interval in .
Although only applicable to semibounded Hamiltonians, this result yields a much sharper
condition for the existence of Zeno dynamics than AZC, and a more general
characterization of the Zeno dynamics: We had to pose (besides AZC) the stronger
condition that AEΩ contains a dense set of analytic elements for the original
Hamiltonian H .
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Gibbs Equilibria for Zeno Dynamics

Corollary. If (U, E) satisfies (AZC) for A, then, for every β > 0, the set of (τE , β)-KMS
states of AE coincides with the set of (τ̂E , β)-KMS states, where τ̂E is induced by UE .

Local Gibbs states in quantum spin systems: For A ∈ A(Λ), AEΛ ∈ A(Λ)EΛ ,

ωΛ(A)
def
=

TrHΛ

(
e−βH(Λ)A

)

TrHΛ

(
e−βH(Λ)

)  ωEΛ(AEΛ)
def
=

TrHEΛ

(
e−βEΛH(Λ)EΛAEΛ

)

TrHEΛ

(
e−βEΛH(Λ)EΛ

)

A thermodynamic limit point of a net of local states ωΛ over A(Λ), is the
weak* limit of the net of extensions ωG

Λ of ωΛ to A.

If the local dynamics τΛ generated by H(Λ) converges uniformly to an auto-
morphism group of A, then every thermodynamic limit point is a (τ, β)-KMS state.

Corollary. Let β > 0. Let Λα → ∞ be such that the local dynamics converges
uniformly, and the net of local Gibbs states ωΛα

has a thermodynamic limit point.
If EΛα

converges in norm to a projection E in A satisfying (AZC),
then ωE(AE)

def
= limα ωG

EΛα
(AE) is a (τE , β)-KMS state on AE .
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then ωE(AE)

def
= limα ωG

EΛα
(AE) is a (τE , β)-KMS state on AE .
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Domains of Quantum Spin Systems Revisited

Let the interaction be such that the conditions of the Corollary are satisfied.
The local projections were EϕΛ;Λ′

def
= Λ′\Λ ⊗ PΦΛ , ΦΛ ∈ HΛ.

We obtain a (τEϕΛ , β)-KMS state on AEϕΛ
by

ωEϕΛ
(AEϕΛ

)
def
= lim

Λ′→∞

TrHΛ′

(
exp(−β Λ′\Λ ⊗ PΦΛ H(Λ′) Λ′\Λ ⊗ PΦΛ)AEϕΛ;Λ′

)

TrHΛ′

(
exp(−β Λ′\Λ ⊗ PΦΛ H(Λ′) Λ′\Λ ⊗ PΦΛ)

)

where AEϕΛ;Λ′ ∈ AEϕΛ;Λ′ converges in A to AEϕΛ
.

Assume decompositions A = AΛc ⊗AΛ, and H =
∑
i

HΛc,i ⊗ HΛ,i.

Then ωEϕΛ
is the Gibbs equilibrium state for the averaged Hamiltonian

ϕΛ(H) =
∑

i

HΛc,i · ϕΛ(HΛ,i)

This state is also the strong coupling (λ → ∞) limit of the Gibbs equilibria for
Hλ = H + λ Λc ⊗ PΦΛ

[M Fannes, R F Werner (1995) Helv. Phys. Acta 68 635]
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Example: The X-Y Model 1/3

A spin chain over = , with Hx = 2, with observable algebras A[n,m], n ≤ m ∈

generated by creation and annihilation operators ax, a∗
x, n ≤ x ≤ m, satisfying CAR

[ax, ay] = 0 = [ax, a∗
y], x 6= y, {ax, a∗

x} = 1, {ax, ax} = 0.

Global observable algebra A
def
=

⋃
n∈

A[−n,n].

Local Hamiltonians H[n,m]
def
=

J

2

m−1∑

x=n

(
a∗

xax+1 + a∗
x+1ax

)
+ h

m∑

x=n

a∗
xax.

Global dynamics τt(·)
def
= lim

n→∞
eitH[−n,n] · e−itH[−n,n] .

(A, τ) is a C∗-dynamical system with unique (τ, β)-KMS state given by the weak-* limit
of any increasing net of local Gibbs states, and (A, τ) is asymptotically abelian.

Choose a state ρ0 ∈ H0 and set Eρ0

def
= H[−∞,−1]

⊗ Pρ0 ⊗ H[1,∞]
.

The interaction range is one, and Eρ0 acts local =⇒ the Zeno dynamics τEρ0 exists.
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Example: The X-Y Model 2/3

=⇒ The Zeno Hamiltonian decomposes Eρ0HEρ0 = Hρ0

−︸︷︷︸
acts on: H[−∞,−1]

+ Hρ0

0︸︷︷︸
H0

+ Hρ0

+︸︷︷︸
H[1,∞]

.

Explicitly, with H[1,∞] = lim
n→∞

H[1,n]:

Hρ0

0 = hρ0(a
∗
0a0), Hρ0

+ =
J

2

(
ρ0(a0)a1 + ρ0(a0)a

∗
1

)
+ H[1,∞], Hρ0

− similar.

Lateral Gibbs states: ω±
ρ0,β(A±)

def
=

TrH[1,∞]

(
e−βH

ρ0
± A±

)

TrH[1,∞]

(
e−βH

ρ0
±

) , A± ∈ A±
def
=

{
A[1,∞]

A[−∞,−1]

All Zeno observables AEρ0
∈ AEρ0

are of the form

AEρ0
=

∑

i

ρ0(A0,i)A−,i ⊗ Pρ0 ⊗ A+,i, A±,i ∈ A±, A0 ∈ A0.

The scalar factor e−βH
ρ0
0 cancels out in the definition of the Gibbs states

=⇒ ωρ0,β(AEρ0
) =

∑

i

ρ0(A0,i)ω
−
ρ0,β(A−,i)ω

+
ρ0,β(A+,i),

that is, ωρ0,β = ω−
ρ0,β ⊗ ρ0 ⊗ ω+

ρ0,β on AEρ0
is the Zeno-Gibbs equilibrium.
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Example: The X-Y Model 3/3
Physical implications:

=⇒ ωρ0,β is the unique (τEρ0 , β)-KMS state on AEρ0
.

=⇒ τEρ0 decouples the left and right subchains.

=⇒ Hρ0

± are averaged Hamiltonians w.r.t. ρ0 =⇒ the Zeno dynamics
imposes boundary conditions on the lateral subchains,
parametrized by the single complex number ρ0(a0)

=⇒ The difference H − Eρ0HEρ0 is a finite combination of ax, a∗
x, x = 0, ±1.

=⇒ H − Eρ0HEρ0 is bounded, and moreover entire analytic for τEρ0 .

=⇒ (Return to equilibrium) The system prepared in the (τ, β)-KMS state
will evolve to the Zeno equilibrium ωρ0,β , under τEρ0 .

=⇒ Observation of the state of a single lattice site changes the global equilibrium.
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Summary and Conclusions
The abstract treatment of the Zeno paradox (Misra & Sudarshan) was transferred to
the context of quantum statistical mechanics (von Neumann algebras, KMS states).

Zeno dynamics operates naturally on AE = EAE.

A sufficient short-time asymptotic condition (AZC) for the emergence
of Zeno dynamics was given.

(AZC) was shown to be effective:
Fundamentally, in the prevention of return to equilibrium, and
concretely, in the generic class of models of quantum spin systems.

The generator of Zeno dynamics can be identified as EHE,
which allows one to construct Gibbs equilibria for it.
Zeno dynamics can impose boundary conditions on a quantum spin system.
The treatment of the X-Y model exhibited new phenomenological aspects:

A microscopic measurement of a quantum state (at a single site) changes the
global equilibrium.
The system spontaneously evolves to the Zeno equilibrium.

Ref’s: A U Schmidt (2002) J. Phys. A 35 7817–7825, math-ph/0203008,
and (2003) J. Phys. A 36 1135–1148, math-ph/0207013
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