ded Jejiwis pue uoneid ‘erepelawl Mala

Zeno Dynamics in Quantum Statistical Mechanics

o}
o
»
N
=
I}
S
©
N
o
C
=

Andreas U. Schmidt

aschmidt@math.uni—-frankfurt.de

www.math.uni—-frankfurt.de/ “aschmidt

Fachbereich Mathematik
Johann Wolfgang Goethe Universitit
Frankfurt am Main, Germany

Aq papinoid

31st July 2002
revised vl 16th December 2002
v2 24th April 2003

SY1YIS|NYISYOOH

Zeno Dynamics in Quantum Statistical Mechanics — §


https://core.ac.uk/display/14504713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.math.uni-frankfurt.de/~aschmidt

Talk presented at
the Department of Physics
University of Pisa, Italy
3rd July 2002
at the conference on ‘Irreversible Quantum Dynamics’
the Abdus Salam ICTP, Trieste, Italy
29th July — 2nd August 2002 (v1)
and at the University of Durban—Westville, South Africa

14th May 2003 (v2)
by
Andreas U. Schmidt
Fachbereich Mathematik Fraunhofer Institute Secure Telecooperation
Johann Wolfgang Goethe-Universitit and Dolivostral3e 15

60054 Frankfurt am Main, Germany 64293 Darmstadt, Germany

Zeno Dynamics in Quantum Statistical Mechanics — p.2/21






Prepare the system in the initial state ®; and assume Hamiltonian evolution.




Quantum Zeno Effect: Evolution Impeded by Measurement

Prepare the system in the initial state ®; and assume Hamiltonian evolution. Then, the
short-time behavior is quadratic:

P (1) = |(®;, exp(—itH/R)®;)|* ~ 1 — (AH)*t*/h?, where

(AH)? = (®;, H?®;) — (®;, HD;)".
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Prepare the system in the initial state ®; and assume Hamiltonian evolution. Then, the
short-time behavior 1s quadratic:

P (1) = |(®;, exp(—itH/R)®;)|* ~ 1 — (AH)*t*/h?, where
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Prepare the system in the initial state ®; and assume Hamiltonian evolution. Then, the
short-time behavior 1s quadratic:

P (1) = |(®;, exp(—itH/R)®;)|* ~ 1 — (AH)*t*/h?, where

(AH)? = (®;, H?®;) — (B;, HD;)”.
Perform measurements of ®; at times t/N,2t/N ... t, modelled by F = |®,;)(®D;]|.
Then
N N large 2,2 — 00
P (1) = [P/ ~ (1- K8) TR e WV 20y,
Experiments:
® (1990 Itano et al.) Transitions in "Be™.

® (1992 Inagaki et al.) Thought experiment with neutron spins.
® (2001 Wunderlich et al.) Transitions in 1"2Yb™.
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Quantum Zeno Effect: Evolution Impeded by Measurement

Prepare the system in the initial state ®; and assume Hamiltonian evolution. Then, the
short-time behavior is quadratic:

P (1) = |(®;, exp(—itH/R)®;)|* ~ 1 — (AH)*t*/h?, where

(AH)? = (®;, H?®;) — (®;, HD;)".

Perform measurements of ®; at times t/N,2t/N ... t, modelled by F = |®,;)(®D;]|.
Then

2,2 N N large 2,2 — 00
P (1) = [P/ ~ (1- K8) TR e WV 20y,

Experiments:
® (1990 Itano et al.) Transitions in "Be™.

® (1992 Inagaki et al.) Thought experiment with neutron spins.
® (2001 Wunderlich et al.) Transitions in 1"2Yb™.

Reviews:
® H Nakazato, M Namiki, S Pascazio (1996) Internat. J. Modern Phys. B 10 247.

® M A B Whitaker (2000) Progress in Quantum Electronics 24 1-106.
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Example: Quantum Zeno Tomography

A Mach—Zehnder interferometer can be used to detect the presence of a
black sample (= = 0), without absorbing the probing particle, if it is
prepared to be in the Zeno channel (Z), and detected after L rounds in
the interferometer, in the limit . — oo, see P Facchi et al. (2002)
Phys. Rev. A 66 012110 (pictures courtesy of S. Pascazio).
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A Mach—Zehnder interferometer can be used to detect the presence of a
black sample (= = 0), without absorbing the probing particle, if it is
prepared to be in the Zeno channel (Z), and detected after L rounds in
the interferometer, in the limit . — oo, see P Facchi et al. (2002)
Phys. Rev. A 66 012110 (pictures courtesy of S. Pascazio).

(b) C) (d)

FIG. 5 Comparison of standard and Zeno tomographic techniques, In each Frame, top lefl = reconstruction by standard technique: top
right = musinterpreted pizels by the standard technique: center left = reconstruction by Zeno technique with L= 10; center right
misinterpreted pixels by the Zeno technique with L= 10; bottom left = reconstruction by Zeno technique with L =163
misinterpreted p by the Zeno technique with L= 165, The mean number
and 13 for frames (a), (b, (cl, and (d), respectively. The total number of particles N (total ene sroximately as
6.38, tor top, center, and bottom reconstructions ively, We used 7,= i Th he sample st of 10000
(=1 ) pixels. where white, gray. and blac r with frequenci anc 91, respectively. The number of
misinterpreted pixels are (lop to bottom) (a) 968 , 315; (b) 942, 596, 212
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With U = ', H semibounded, F a projection on a separable Hilbert space H:




Zeno Dynamics in Quantum Mechanics

With U = e'""| H semibounded, E a projection on a separable Hilbert space H:

® Does
def def

W(t) = s-lim F,,(t), where F,(t) =

n—aoo

[EU(t/n)E]",

form a strongly continuous unitary group on a  Zeno subspace C EH?
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® Does
def def

W(t) = s-lim F,,(t), where F,(t) =

n—aoo

[EU(t/n)E]",

form a strongly continuous unitary group on a Zeno subspace C E'H? That is,

® has the Zeno dynamics W (t) a self-adjoint generator B = EB = BE = EBE?
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With U = e'*H| H semibounded, E a projection on a separable Hilbert space H:

® Does
W (t) = s-lim F,(t), where F,(t) = [EU(t/n)E]",
form a strongly continuous unitary group on a C E'H? That is,
® has the W (t) a self-adjoint generator B = EB = BE = EBE?

(1977 Misra & Sudarshan): Yes, if the F,, converge at all! (+ technical conditions)
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W (t) = s-lim F,(t), where F,(t) = [EU(t/n)E]",
form a strongly continuous unitary group on a C E'H? That is,
® has the W (t) a self-adjoint generator B = EB = BE = EBE?

(1977 Misra & Sudarshan): Yes, if the F,, converge at all! (+ technical conditions)

The limit n — oo 1s unphysical, since the duration of the measurement is always > 0,
or would require an infinite amount of energy, due to time/energy uncertainty
[A K Pati (1996) Phys. Lett. A 215 7-13].
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With U = e'*H| H semibounded, E a projection on a separable Hilbert space H:

® Does
W (t) = s-lim F,(t), where F,(t) = [EU(t/n)E]",
form a strongly continuous unitary group on a C E'H? That is,
® has the W (t) a self-adjoint generator B = EB = BE = EBE?

(1977 Misra & Sudarshan): Yes, if the F), converge at all! (+ technical conditions)

The limit n — oo 1s unphysical, since the duration of the measurement is always > 0,
or would require an infinite amount of energy, due to time/energy uncertainty
[A K Pati (1996) Phys. Lett. A 215 7-13].

Yet, it 1s of conceptual interest:
® It is indicative for the appearance of the Zeno effect for finite n in models.

® Allows to identify the Zeno subspace to which the evolution will be
(approximately) confined.

® The Zeno dynamics is identified as ordinary quantum dynamics with boundary
conditions [Facchi, Pascazio, Scardicchio, Schulman (2001) Phys. Rev. A 65].
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® The algebra of observables A (a C*- or W *-algebra with 1).
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® GNS-representation 7, on a Hilbert space H, such that w(-) = (0, 7, (-)Q2).
(€2 is cyclic and separating for 7, (A).)
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® The algebra of observables A (a C*- or W *-algebra with 1).

® A state w on A (faithful and normal), inducing the

® GNS-representation 7, on a Hilbert space H, such that w(-) = (0, 7, (-)Q2).
(€2 is cyclic and separating for 7, (A).)

def W

® The (von Neumann algebra) A = 7,(A4)" = 7,(A) .
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Algebraic Setting of Quantum Statistical Mechanics
® The algebra of observables A (a C*- or W *-algebra with 1).

® A state w on A (faithful and normal), inducing the

® GNS-representation 7, on a Hilbert space H, such that w(-) = (0, 7, (-)Q2).
(€2 is cyclic and separating for 7, (A).)

def W

® The (von Neumann algebra) A = 7,(A4)" = 7,(A) .

def

® The automorphic evolution (¢, A) 5 R x A —— 174(A) = U(t)AU(t)* € A,
covariantly implemented by a strongly continuous, unitary group U (%) on H.
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analytically to the strip 0 < Imt < 3, forall A, B € A,

Zeno Dynamics in Quantum Statistical Mechanics — p.6/21



Algebraic Setting of Quantum Statistical Mechanics
® The algebra of observables A (a C*- or W *-algebra with 1).

® A state w on A (faithful and normal), inducing the

® GNS-representation 7,, on a Hilbert space H, such that w(:) = (Q, 7, (-)$2).
(€2 is cyclic and separating for 7, (A).)

W

® The A= 7, (A) =7m,(A) .

def

® The automorphic evolution (¢, A) 5 R x A —— 174(A) = U(t)AU(t)* € A,
covariantly implemented by a strongly continuous, unitary group U (%) on H.

® The KMS condition for equilibrium states:
w is called , if the functions ¢t — w(A7:(B)) extend
analytically to the strip 0 < Im¢ < 3, forall A, B € A, and

w(AT4ip(B)) = w(ri(B)A).

Zeno Dynamics in Quantum Statistical Mechanics — p.6/21



Algebraic Setting of Quantum Statistical Mechanics
® The algebra of observables A (a C*- or W *-algebra with 1).

® A state w on A (faithful and normal), inducing the

® GNS-representation 7,, on a Hilbert space H, such that w(:) = (Q, 7, (-)$2).
(€2 is cyclic and separating for 7, (A).)

W

® The A= 7, (A) =7m,(A) .

def

® The automorphic evolution (¢, A) 5 R x A —— 174(A) = U(t)AU(t)* € A,
covariantly implemented by a strongly continuous, unitary group U (%) on H.

® The KMS condition for equilibrium states:
w is called , if the functions ¢t — w(A7:(B)) extend
analytically to the strip 0 < Im¢ < 3, forall A, B € A, and

w(AT4ip(B)) = w(ri(B)A).

£ > 0is the

Zeno Dynamics in Quantum Statistical Mechanics — p.6/21
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® The algebra of observables A (a C*- or W *-algebra with 1).

® A state w on A (faithful and normal), inducing the

® GNS-representation 7,, on a Hilbert space H, such that w(:) = (Q, 7, (-)$2).
(€2 is cyclic and separating for 7, (A).)

W

® The A= 7, (A) =7m,(A) .

def

® The automorphic evolution (¢, A) 5 R x A —— 174(A) = U(t)AU(t)* € A,
covariantly implemented by a strongly continuous, unitary group U (%) on H.

® The KMS condition for equilibrium states:
w is called , if the functions ¢t — w(A7:(B)) extend
analytically to the strip 0 < Im¢ < 3, forall A, B € A, and

W(Ariyi5(B)) = w(ru(B)A),
B > 01is the . Paradigm:

e Terg (=55 A)
CU@(A) - TI'H (e_BH) ’

for A e A, dimH < oo.
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Let A, H, U, §) be as above, E € A a projection.




Misra & Sudarshan’s Theorem in QSM

Let A, H, U, ) be as above, E € A a projection. Assume that
i) the following limits exist for all A € A:
W(HAQE lim F,(t) = lim [EU(t/n)E]"AQ  and

W(t+18/2)AQ = lim [EU((t+i/2)/n)E] "AQ.
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Let A = EAFE be the (reduced algebra) and Hg = AEg() the (Zeno subspace) .
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® W (t) is a strongly continuous group of unitary operators on Hg.
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® W (t) is a strongly continuous group of unitary operators on Hg.
® The action R x Ag > (t, Ap) — TE(A) = W () AgW (t)* € Ag is an
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Let A, H, U, ) be as above, E € A a projection. Assume that
i) the following limits exist for all A € A:

W(HAQE lim F,(t) = lim [EU(t/n)E]"AQ  and

n—0oo n—0oo

W(t+18/2)AQ = lim [EU((t+i/2)/n)E] "AQ.

ii) Fort € R, W (t) is weakly continuous, and w-lim;_.o W (t) = F.
Let Ap = EAE be the and Hg = AgQ the
Then
® W (t) is a strongly continuous group of unitary operators on Hg.
® The action R x Ag > (t, Ap) — TE(A) = W () AgW (t)* € Ag is an
automorphism group of Ag.

® The vectors W (2)AgS), Ag € Ag, extend analytically to the strip
0 < Im 2z < B/2 and are continuous on its boundary.

The proof follows [B Misra, E C G Sudarshan (1977) J. Math. Phys. 18] using complex
analysis.
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Misra & Sudarshan’s Theorem in QSM

Let A, H, U, ) be as above, E € A a projection. Assume that
i) the following limits exist for all A € A:

W(HAQE lim F,(t) = lim [EU(t/n)E]"AQ  and

n—0oo n—0oo

W(t+18/2)AQ = lim [EU((t+i8/2)/n)E] "AQ.

ii) Fort € R, W (t) is weakly continuous, and w-lim;_.o W (t) = F.

def

Let Ap = EAFE be the and Hg = AgQ the
Then
® W (t) is a strongly continuous group of unitary operators on Hg.
® The action R x Ag > (t, Ap) — TE(A) = W () AgW (t)* € Ag is an
automorphism group of Ag.
® The vectors W (2)AgS), Ag € Ag, extend analytically to the strip
0 < Im 2z < B/2 and are continuous on its boundary.

The proof follows [B Misra, E C G Sudarshan (1977) J. Math. Phys. 18] using complex
analysis. Differences: Holomorpy in a strip not in the upper halfplane, and U(z) are
unbounded (but with nice common core A()).
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Comparison of Results by Analyticity Domains

® Sectorial Semigroups (Kato 1978): For semigroups e ~*“, holomorphic in a
sector X = {C 3 2z # 0 ’ larg z| < 6,0 < 0 < 7/2}, the Zeno limit always exists
in the interior of X, for every orthogonal projection £ on the Hilbert space.

-l
-
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® Sectorial Semigroups (Kato 1978): For semigroups e ~*“, holomorphic in a
sector X = {C 3 2z # 0 ’ larg z| < 6,0 < 0 < 7/2}, the Zeno limit always exists
in the interior of X, for every orthogonal projection £ on the Hilbert space.

-l
-

® Quantum Mechanics (Misra/Sudarshan): In this case, one needs the Zeno limit

on the boundary R of the upper halfplane, where U (z) = e'*# is holomorphic. The

above result only guarantees it for Im z > 0.
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Comparison of Results by Analyticity Domains

® Sectorial Semigroups (Kato 1978): For semigroups e ~*“, holomorphic in a
sector X = {C 3 2z # 0 ’ larg z| < 6,0 < 0 < 7/2}, the Zeno limit always exists
in the interior of X, for every orthogonal projection £ on the Hilbert space.

-l
-

® Quantum Mechanics (Misra/Sudarshan): In this case, one needs the Zeno limit

on the boundary R of the upper halfplane, where U (z) = e'*# is holomorphic. The

above result only guarantees it for Im z > 0.

® Quantum Statistical Mechanics (AUS): The Zeno limit is needed on the
boundary of a strip in C. No sectorial result can be used.
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Insertion of 1 = E-+ + E into Fy(t) = EU(t)E yields

Fi(t) = EU(t/2)(E+ + E)U(t/2)E




An Eftective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields
Fi(t) = EU(t/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
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An Effective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields

Fi(t) = EU(t/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
The (asymptotic Zeno condition) : |ELUR)E|| =O(t), ast— 0. (AZC)

(precisely: ||E+U(¢)EAQ|| = C||A||¢ for ¢, Im ¢ > 0, and || < 7o for a fixed rg > 0.)
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An Effective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields

Fi(t) = EU(t/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
The (asymptotic Zeno condition) : |ELUR)E|| =O(t), ast— 0. (AZC)

(precisely: | E+U(()EAQ|| = C||A|¢ for ¢, Im ¢ > 0, and [¢| < 7o for a fixed 79 > 0.)
Iterating the above calculation, one estimates H (Fin(t) — Fam (1)) ®||, ® € H,
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An Effective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields

Fi(t) = EUt/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
The : |ELUR)E|| =O(t), ast— 0. (AZC)
(precisely: ||E+U(¢)EAQ|| = C||A||¢ for ¢, Im ¢ > 0, and || < 7o for a fixed rg > 0.)

Iterating the above calculation, one estimates || (Fy, (¢) — Fpn(t))®||, @ € H, and using

the triangle inequality it follows from (AZC), for m > n large enough,

|(Fn(t) — Fn())®]| < Clle|l

n
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An Effective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields

Fi(t) = EU(t/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
The : |ELUR)E|| =O(t), ast— 0. (AZC)
(precisely: ||E+U(¢)EAQ|| = C||A||¢ for ¢, Im ¢ > 0, and || < 7o for a fixed rg > 0.)

Iterating the above calculation, one estimates || (Fy, (¢) — Fpn(t))®||, @ € H, and using

the triangle inequality it follows from (AZC), for m > n large enough,

|(Fn(t) — Fn())®]| < Clle|l

n

— The F,,(t),t € R, form a strong Cauchy sequence.
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An Effective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields

Fi(t) = EU(t/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
The : |ELUR)E|| =O(t), ast— 0. (AZC)
(precisely: ||E+U(¢)EAQ|| = C||A||¢ for ¢, Im ¢ > 0, and || < 7o for a fixed rg > 0.)

Iterating the above calculation, one estimates || (Fy, (¢) — Fpn(t))®||, @ € H, and using

the triangle inequality it follows from (AZC), for m > n large enough,

|(Fn(t) — Fn())®]| < Clle|l

n

— The F,,(t),t € R, form a strong Cauchy sequence.
—> F,,(t) converges strongly to W (¢).

Zeno Dynamics in Quantum Statistical Mechanics — p.9/21



An Effective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields

Fi(t) = EU(t/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
The : |ELUR)E|| =O(t), ast— 0. (AZC)
(precisely: ||E+U(¢)EAQ|| = C||A||¢ for ¢, Im ¢ > 0, and || < 7o for a fixed rg > 0.)

Iterating the above calculation, one estimates || (Fy, (¢) — Fpn(t))®||, @ € H, and using

the triangle inequality it follows from (AZC), for m > n large enough,

|(Fn(t) — Fn())®]| < Clle|l

n

— The F,,(t),t € R, form a strong Cauchy sequence.

—> F,,(t) converges strongly to W (¢).
— The convergence is uniform for t € K, K € R compact.
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An Effective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields

Fi(t) = EU(t/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
The : |ELUR)E|| =O(t), ast— 0. (AZC)
(precisely: ||E+U(¢)EAQ|| = C||A||¢ for ¢, Im ¢ > 0, and || < 7o for a fixed rg > 0.)

Iterating the above calculation, one estimates || (Fy, (¢) — Fpn(t))®||, @ € H, and using

the triangle inequality it follows from (AZC), for m > n large enough,

|(Fn(t) — Fn())®]| < OHi”tQ'

The F,(t), t € R, form a strong Cauchy sequence.
F.,(t) converges strongly to W (t).

The convergence 1s uniform for ¢t € K, K € R compact.

I

W (t) is strongly continuous for ¢ in compacts.
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An Effective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields

Fi(t) = EU(t/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
The : |ELUR)E|| =O(t), ast— 0. (AZC)
(precisely: ||E+U(¢)EAQ|| = C||A||¢ for ¢, Im ¢ > 0, and || < 7o for a fixed rg > 0.)

Iterating the above calculation, one estimates || (Fy, (¢) — Fpn(t))®||, @ € H, and using

the triangle inequality it follows from (AZC), for m > n large enough,

|(Fn(t) — Fn())®]| < OHi”tQ'

The F,(t), t € R, form a strong Cauchy sequence.
F.,(t) converges strongly to W (t).

The convergence 1s uniform for ¢t € K, K € R compact.
W (t) is strongly continuous for ¢ in compacts.

W(0) = F (<= F,(0) = E, Vn).

I
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An Effective Condition for Zeno Dynamics
Insertion of 1 = E+ + F into F (t) = EU(t)E yields

Fi(t) = EU(t/2)(E+ + E)U(t/2)E = Fy(t) + (EU(t/2)E+)(ELU(t/2)E).
The : |ELUR)E|| =O(t), ast— 0. (AZC)
(precisely: ||E+U(¢)EAQ|| = C||A|¢ for ¢, Im ¢ > 0, and || < 7o for a fixed rg > 0.)

, ® € 'H, and using

the triangle inequality it follows from (AZC), for m > n large enough,

|(Fn(t) — Fn())®]| < CII;I;Ht?.

Iterating the above calculation, one estimates || (Fy, (¢) — Fpm (t))®

The F,(t), t € R, form a strong Cauchy sequence.
F.,(t) converges strongly to W (t).

The convergence 1s uniform for ¢t € K, K € R compact.
W (t) is strongly continuous for ¢ in compacts.

W(0) = F (<= F,(0) = E, Vn).

W(()AQ, A € A, exists for 0 < Im ¢ < 3/2, is holomorphic in the interior and
continuous on the boundary.

I A
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An Existence Theorem for Zeno Dynamics

Let (A, 7,w,08>0,7,,H,Q,U, E) as above.
Assume that (U, F) satisfies (AZC) for A:

|EFUQEAQ| =C - ||A| - ¢

is valid for ( with |(| < rq for some fixed ro > 0 and Im > 0. Then

def

i) the strong operator limits W (t) = s-lim,,_,oo |[EU (t/n)E| " exist,

ii) form a strongly continuous group of unitary operators on the Zeno subspace
Hpg = AgQ < EAEQ C EH,

iii) and the group W (t) induces an automorphism group 7 of Ag.

iv) The vectors W (2)Ag(), Ag € Ag, extend analytically to the strip
0 < Im 2z < B/2 and are continuous on its boundary.
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An Existence Theorem for Zeno Dynamics

Let (A, 7,w,08>0,7,,H,Q,U, E) as above.
Assume that (U, F) satisfies (AZC) for A:

|EFUQEAQ| =C - ||A| - ¢

is valid for ( with |(| < rq for some fixed ro > 0 and Im > 0. Then

def

i) the strong operator limits W (t) = s-lim,,_,oo |[EU (t/n)E| " exist,

ii) form a strongly continuous group of unitary operators on the Zeno subspace
Hpg = AgQ < EAEQ C EH,

iii) and the group W (t) induces an automorphism group 7 of Ag.

iv) The vectors W (2)Ag(), Ag € Ag, extend analytically to the strip
0 < Im 2z < B/2 and are continuous on its boundary.

® The (AZC) renders applicable the methods of perturbation theory!
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Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]




Example: Non-Return to Equilibrium
Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

|t| — o0

Let A be (asymptotically abelian), i.e., |[A, :(B)|| — 0, A, B € A.
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Example: Non-Return to Equilibrium

Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

Let A be (asymptotically abelian), i.e., ||[A, 7:(B)]|| R 0, A, B € A.

Let P € A be a bounded perturbation, analytic for 7.
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Example: Non-Return to Equilibrium
Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

Let A be (asymptotically abelian), i.e., ||[A, 7:(B)]|| R 0, A, B € A.

Let P € A be a bounded perturbation, analytic for 7. Then,
for every (77, 8)-KMS state w’’, the limits wy = lim w’ o 7, are (7, 3)-KMS states.

t—+00
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Example: Non-Return to Equilibrium

Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

Let A be ie, |I[A, 7(B)]|| "= 0,4, Be A

Let P € A be a bounded perturbation, analytic for 7. Then,
for every (77, 8)-KMS state w’’, the limits wy = lim w’ o 7, are (7, 3)-KMS states.

t—+00

Assume common, covariant implementations U, U* of 7, 7¥ on H (loc. cit. Thm. 1).
p
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Example: Non-Return to Equilibrium

Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

Let A be ie, |I[A, 7(B)]|| "= 0,4, Be A

Let P € A be a bounded perturbation, analytic for 7. Then,
for every (77, 3)-KMS state w”’, the limits w+ = lim w’ o 7, are (7, 3)-KMS states.

t—+00

Assume common, covariant implementations U, U Pof 7, 7¥ on H (loc. cit. Thm. 1).

t tn—l
— U@)=U®)+ > [dty--- [ dt, U"(t1)PU (ta —t1)P--- PUT(t —t,),
n>10 0

where the n-th term in the sum is bounded by || P||"t" /n!.
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Example: Non-Return to Equilibrium

Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

Let A be ie, |I[A, 7(B)]|| "= 0,4, Be A
Let P € A be a bounded perturbation, analytic for 7. Then,
for every (77, 3)-KMS state w”’, the limits w+ = lim w’ o 7, are (7, 3)-KMS states.

t—+00

Assume common, covariant implementations U, U* of 7, 7¥ on H (loc. cit. Thm. 1).
p

t tn—l
— U@)=U®)+ > [dty--- [ dt, U"(t1)PU (ta —t1)P--- PUT(t —t,),
n>10 0

where the n-th term in the sum is bounded by || P||"t" /n!.

Let the system be prepared in a 7 -invariant state ®* € H, and E = |®) (.
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Example: Non-Return to Equilibrium

Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

Let A be ie, |I[A, 7(B)]|| "= 0,4, Be A
Let P € A be a bounded perturbation, analytic for 7. Then,
for every (77, 3)-KMS state w”’, the limits w+ = lim w’ o 7, are (7, 3)-KMS states.

t—+00

Assume common, covariant implementations U, U* of 7, 7¥ on H (loc. cit. Thm. 1).
p

t tn—l
— U@)=U®)+ > [dty--- [ dt, U"(t1)PU (ta —t1)P--- PUT(t —t,),
n>10 0

where the n-th term in the sum is bounded by || P||"t" /n!.

Let the system be prepared in a 7 -invariant state ®* € H, and E = |®) (.

= |BYUME| < | UP®)E|| +t - | EXUN () E| +O(| P|*/2) = O().

\
-~ -~

=0 <[P
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Example: Non-Return to Equilibrium

Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

Let A be ie, |I[A, 7(B)]|| "= 0,4, Be A
Let P € A be a bounded perturbation, analytic for 7. Then,
for every (77, 3)-KMS state w”’, the limits w+ = lim w’ o 7, are (7, 3)-KMS states.

t—+00

Assume common, covariant implementations U, U* of 7, 7¥ on H (loc. cit. Thm. 1).
p

t tn—l
— U@)=U®)+ > [dty--- [ dt, U"(t1)PU (ta —t1)P--- PUT(t —t,),
n>10 0

where the n-th term in the sum is bounded by || P||"t" /n!.

Let the system be prepared in a 7 -invariant state ®* € H, and E = |®) (.

= |BYUME| < | UP®)E|| +t - | EXUN () E| +O(| P|*/2) = O().

\
-~ -~

=0 <[P

E

— The Zeno dynamics exists. The system, evolving under 7, remains in the state

oL
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Example: Non-Return to Equilibrium

Return to equilibrium: [D W Robinson (1973) Comm. Math. Phys. 31 171, Theorem 2]

Let A be ie, |I[A, 7(B)]|| "= 0,4, Be A
Let P € A be a bounded perturbation, analytic for 7. Then,
for every (77, 3)-KMS state w”’, the limits w+ = lim w’ o 7, are (7, 3)-KMS states.

t—+00

Assume common, covariant implementations U, U* of 7, 7¥ on H (loc. cit. Thm. 1).
p

t tn—l
— U@)=U®)+ > [dty--- [ dt, U"(t1)PU (ta —t1)P--- PUT(t —t,),
n>10 0

where the n-th term in the sum is bounded by || P||"t" /n!.

Let the system be prepared in a 7 -invariant state ®* € H, and E = |®) (.

= |BYUME| < | UP®)E|| +t - | EXUN () E| +O(| P|*/2) = O().

\
-~ -~

=0 <[P

E

— The Zeno dynamics exists. The system, evolving under 7, remains in the state

oL

P

— This effect generalizes to projections onto 74 -invariant subspaces (¥ (E) = E).
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Context: A X< 74, (local Hilbert spaces) Hx = ® Ha, dimH, = D < oo; I
reX ,




Example: Domains of Quantum Spin Systems 1/2
Context: A (lattice) X = Z¢, (local Hilbert spaces) Hx = & H,, dimH, = D < oo;

reX
A (interaction) ®: X D X — A(X) C B(Hx ) induces (local Hamiltonian dynamics

def Z (I> 7 Uy ) def eith’(A), for A € X bounded.
XCA
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Example: Domains of Quantum Spin Systems 1/2

Context: A (lattice] X = Zd local Hilbert spaces HX = ® H,.,dimH, =D < oo;
reX

A (interaction) ®: X D X — A(X) C B(Hx ) induces (local Hamiltonian dynamics

def Z (I> 7 Uy ) def eith’(A), for A € X bounded.

XCA
For A ¢ A’ € X the (local surface interaction) is

WA A) =) {@(X) | X CA, XNA#0, XNA\A+oz}.
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Example: Domains of Quantum Spin Systems 1/2

Context: A (lattice] X & Zd local Hilbert spaces) H x < QX Hy, dimH, = D < oo;
reX

A (interaction) ®: X D X — A(X) C B(Hx ) induces (local Hamiltonian dynamics

def Z (I> 7 Uy ) def eith’(A), for A € X bounded.
XCA

For A C A’ € X the (local surface interaction) is
Wo(MA)ED {®(X) | X CAN, XNnA#£2, XNAN\A+2}.

It induces a decomposition of the Hamilonian

H@(A/) = H@(A’ \ A) + H@(A) + W@(A; A/), such that [H@(A/ \ A), H@(A)] = 0.
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Example: Domains of Quantum Spin Systems 1/2

Context: A (lattice) X & 7%, (local Hilbert spaces| Hx < QX Hy, dimH, = D < oo;
reX

A (interaction) ®: X D X — A(X) C B(Hx ) induces (local Hamiltonian dynamics

def Z (I) 7 Uy ) def eith’(A), for A € X bounded.
XCA

For A C A’ € X the (local surface interaction) is
Wo(MA)ED {®(X) | X CAN, XNnA#£2, XNAN\A+2}.

It induces a decomposition of the Hamilonian
H@(A/) = H@(A’ \ A) + H@(A) + W@(A; A/), such that [H@(A/ \ A), H@(A)] = 0.

From perturbation theory follows the uniform estimate

UA/(t) — UA/\A(t)UA(t) —I—[) UA/\A(T)UA(T)Wq)(A; A,)dT + O(tz). ('}')
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Example: Domains of Quantum Spin Systems 2/2

Choose an arbitrary vector state @, € Hp. Let ¢ be the associated pure state.
def

Define the projector K, ,;nr = Iana ® Po,,0on Har = Hana @ Ha,
where Py, 1s the projector onto the one-dimensional subspace generated by ® 5 in Hp
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Example: Domains of Quantum Spin Systems 2/2

Choose an arbitrary vector state Py € Hp. Let o be the associated pure state.
def

Define the projector K, ,;nr = Iana ® Po,,0on Har = Hana @ Ha,
where Py, 1s the projector onto the one-dimensional subspace generated by ® 5 in Hp

— Py(A; A)) = Hg(A) + Wa(A; A) is a bounded local perturbation,
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Example: Domains of Quantum Spin Systems 2/2

Choose an arbitrary vector state Py € Hp. Let o be the associated pure state.
def

Define the projector K, ,;nr = Iana ® Po,,0on Har = Hana @ Ha,
where Py, 1s the projector onto the one-dimensional subspace generated by ® 5 in Hp

— Py(A; A)) = Hg(A) + Wa(A; A) is a bounded local perturbation,
— ( is invariant under the dynamics generated by Hg(A") — Pg(A; A)
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Example: Domains of Quantum Spin Systems 2/2

Choose an arbitrary vector state Py € Hp. Let o be the associated pure state.
def

Define the projector K, ,;nr = Iana ® Po,,0on Har = Hana @ Ha,
where Py, 1s the projector onto the one-dimensional subspace generated by ® 5 in Hp

— Py(A; A)) = Hg(A) + Wa(A; A) is a bounded local perturbation,
— ( is invariant under the dynamics generated by Hg(A") — Pg(A; A)

— The local Zeno dynamics exists: Wi,,.a/ () = limy, o0 | By, :a'Upnr (8/1) Eg a7 ] "
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Example: Domains of Quantum Spin Systems 2/2

Choose an arbitrary vector state Py € Hp. Let o be the associated pure state.
def

Define the projector K, ,;nr = Iana ® Po,,0on Har = Hana @ Ha,
where Pg, 1S the projector onto the one-dimensional subspace generated by ® 5 in Hx

def

— Po(A;A') = He(A) + We(A; A') is a bounded local perturbation,
— ( is invariant under the dynamics generated by Hg(A") — Pg(A; A)

— The local Zeno dynamics exists: Wi,,.a/ () = limy, o0 | By, :a'Upnr (8/1) Eg a7 ] "

The thermodynamic limit A’ — oo: If the

Wo(A) =) {@(X) | XNA#£2, XNA“# 2} = lim We(A;A)

AN — o0

1s bounded,
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Example: Domains of Quantum Spin Systems 2/2

Choose an arbitrary vector state Py € Hp. Let o be the associated pure state.
def

Define the projector K, ,;nr = Iana ® Po,,0on Har = Hana @ Ha,
where Pg, 1S the projector onto the one-dimensional subspace generated by ® 5 in Hx

— Pp(A; A) = Hp(A) + Wa(A; A') is a bounded local perturbation,
— ( is invariant under the dynamics generated by Hg(A") — Pg(A; A)

— The local Zeno dynamics exists: Wi,,.a/ () = limy, o0 | By, :a'Upnr (8/1) Eg a7 ] "

The thermodynamic limit A’ — oo: If the

Wo(A) =) {@(X) | XNA#£2, XNA“# 2} = lim We(A;A)

AN — o0

is bounded, then the local Zeno limits n — oo are uniform in A’,
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Example: Domains of Quantum Spin Systems 2/2

Choose an arbitrary vector state Py € Hp. Let o be the associated pure state.
def

Define the projector K, ,;nr = Iana ® Po,,0on Har = Hana @ Ha,
where Pg, 1S the projector onto the one-dimensional subspace generated by ® 5 in Hx

— Pp(A; A) = Hp(A) + Wa(A; A') is a bounded local perturbation,
— ( is invariant under the dynamics generated by Hg(A") — Pg(A; A)

— The local Zeno dynamics exists: Wi,,.a/ () = limy, o0 | By, :a'Upnr (8/1) Eg a7 ] "

The thermodynamic limit A’ — oo: If the

Wo(A) =) {@(X) | XNA#£2, XNA“# 2} = lim We(A;A)

AN — o0

is bounded, then the local Zeno limits n — oo are uniform in A’, and therefore

WSOA (t) — nh_{ilo [EWAU(t/n)EcpA] t = lim WSOA;A/ (t),

AN — o0

def 4.
where E,, = limp/ 00 By, = 1pe @ Py,

def

and U(t) = limp/ .o, Ua/(t) is the global dynamics.
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(AZC) = Ug(t) = *PHE = lim [Ee®/"HE]" = W(t) on HE.

n—aoo




Explicit Form of the Zeno Generator

(AZC) = Ug(t) = *PHE = lim [Ee®/"HE]" = W (t) on HE.

n—00
Let UV € A be analytic for H, and assume from now on that those
vectors form a dense set in ‘H i (excludes pathologies).

Zeno Dynamics in Quantum Statistical Mechanics — p.14/21



Explicit Form of the Zeno Generator

N def

(AZC) = Ug(t) = *FHE = lim [Ee!'/"HE]" = W (t) on Hp.

n—aoo
Let UV € A be analytic for H, and assume from now on that those
vectors form a dense set in ‘H i (excludes pathologies).
By a power series expansion one gets for o, 7 small enough

|(Us(7) = BU(T)E)Ug(0)¥g|| < 7° - Cup,o < 0.
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Explicit Form of the Zeno Generator

N def

(AZC) = Ug(t) = *FHE = lim [Ee!'/"HE]" = W (t) on Hp.

n—aoo
Let UV € A be analytic for H, and assume from now on that those
vectors form a dense set in ‘H i (excludes pathologies).
By a power series expansion one gets for o, 7 small enough

|(Us(7) = BU(T)E)Ug(0)¥g|| < 7° - Cup,o < 0.

|F(t)¥ s — Up(t)¥g|| = ||[EU(t/n)E] " ¥g — Us(t) ¥g|
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Explicit Form of the Zeno Generator

N def

(AZC) = Ug(t) = *FHE = lim [Ee!'/"HE]" = W (t) on Hp.

n—aoo
Let UV € A be analytic for H, and assume from now on that those
vectors form a dense set in ‘H i (excludes pathologies).
By a power series expansion one gets for o, 7 small enough

|(Us(7) = BU(T)E)Ug(0)¥g|| < 7° - Cup,o < 0.

|F(t)¥ s — Ug(t)¥g|| = ||[EU(t/n)E] " ¥g — Ug(t) Ug|
N

=|EUB(t/n)E]"
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Explicit Form of the Zeno Generator

N def

(AZC) = Ug(t) = *FHE = lim [Ee!'/"HE]" = W (t) on Hp.

n—aoo
Let UV € A be analytic for H, and assume from now on that those
vectors form a dense set in ‘H i (excludes pathologies).
By a power series expansion one gets for o, 7 small enough

|(Us(7) = BU(T)E)Ug(0)¥g|| < 7° - Cup,o < 0.

|Fn(t)¥ s — Up(t)¥E| = ||[EUt/n)E] Vg — [EUg(t/n)E] V||

< ﬁ; {[EU(t/n)E]"™ (BU(t/n)E ~ EUs(t/n)E) [EUs(t/n)E]' " } s

Zeno Dynamics in Quantum Statistical Mechanics — p.14/21



Explicit Form of the Zeno Generator

N def

(AZC) = Ug(t) = *FHE = lim [Ee!'/"HE]" = W (t) on Hp.

n—aoo
Let UV € A be analytic for H, and assume from now on that those
vectors form a dense set in ‘H i (excludes pathologies).
By a power series expansion one gets for o, 7 small enough

|(Us(r) — BU(7)E)Ug(0)¥z|| < 7° - Cyp,o < 0.
|E ()Y — Up(t) g = || [EU{/n)E]" Vg — [EUR(t/n)E]" Vg

n
<>
1=1

H [EU(t/n)E]" ™" (EU(t/n)E — EUp(t/n)E) [EUs(t/n)E] " } quH

= é |(Ug(t/n) — EU(t/n)E)Us(t(i — 1)/n) |
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Explicit Form of the Zeno Generator

(AZC) = Ug(t) = *FHE = lim [Ee!'/"HE]" = W (t) on Hp.

n—oo

Let UV € A be analytic for H, and assume from now on that those

vectors form a dense set in H g (excludes pathologies).
By a power series expansion one gets for o, 7 small enough

|(Us(r) — BU(7)E)Ug(0)¥z|| < 7° - Cyp,o < 0.
|E ()Y — Up(t) g = || [EU{/n)E]" Vg — [EUR(t/n)E]" Vg

< ﬁ; {[EU(t/n)E]"™ (BU(t/n)E ~ EUs(t/n)E) [EUs(t/n)E]' " } s

IA

é |(Ue(t/n) — EU(t/n)E)Us(t(i — 1)/n)¥g|

n 2
Z 4 - sup C

: n p \IIan-
=1

o <[]

IA
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Explicit Form of the Zeno Generator

(AZC) = Ug(t) = *FHE = lim [Ee!'/"HE]" = W (t) on Hp.

n—oo

Let UV € A be analytic for H, and assume from now on that those

vectors form a dense set in H g (excludes pathologies).
By a power series expansion one gets for o, 7 small enough

|(Us(r) — BU(7)E)Ug(0)¥z|| < 7° - Cyp,o < 0.
|E ()Y — Up(t) g = || [EU{/n)E]" Vg — [EUR(t/n)E]" Vg

< ﬁ; {[EU(t/n)E]"™ (BU(t/n)E ~ EUs(t/n)E) [EUs(t/n)E]' " } s

IA

é |(Ue(t/n) — EU(t/n)E)Us(t(i — 1)/n)¥g|
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Explicit Form of the Zeno Generator

(AZC) = Ug(t) = *FHE = lim [Ee!'/"HE]" = W (t) on Hp.

n—oo

Let UV € A be analytic for H, and assume from now on that those

vectors form a dense set in H g (excludes pathologies).
By a power series expansion one gets for o, 7 small enough

|(Us(r) — BU(7)E)Ug(0)¥z|| < 7° - Cyp,o < 0.
|E ()Y — Up(t) g = || [EU{/n)E]" Vg — [EUR(t/n)E]" Vg

< ﬁ; {[EU(t/n)E]"™ (BU(t/n)E ~ EUs(t/n)E) [EUs(t/n)E]' " } s

IA

é |(Ue(t/n) — EU(t/n)E)Us(t(i — 1)/n)¥g|

IA

n 2 2/

t t°Cy, ¢
Z —) - sup Cogo= ~ = W(t)Vg =Ug(t)VE.
i=1

o<t il
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http://arXiv.org/abs/math-ph/0302060

A Result by Exner and Ichinose

In the QM case (H separable, H self-adjoint & semibounded, £ orthogonal projection),
a recent result (P Exner, T Ichinose math-ph/0302060) uses properties of the Zeno
generator as a criterion for the existence of Zeno dynamics.
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A Result by Exner and Ichinose

In the QM case (H separable, H self-adjoint & semibounded, £ orthogonal projection),
a recent result (P Exner, T Ichinose math-ph/0302060) uses properties of the Zeno
generator as a criterion for the existence of Zeno dynamics.

Let Hp = (H'Y/?E)*(H'/?E) be the self-adjoint operator associated with the quadratic

form H'/2E on the form domain D(H'/2E). Hp, is a self-adjoint extension of the

(generally non-closed) operator £ H F.. H 1s defined, and acts nontrivially, on a closed
subspace of E'H.
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A Result by Exner and Ichinose

In the QM case (H separable, H self-adjoint & semibounded, £ orthogonal projection),
a recent result (P Exner, T Ichinose math-ph/0302060) uses properties of the Zeno
generator as a criterion for the existence of Zeno dynamics.

Let Hp = (H'Y/?E)*(H'/?E) be the self-adjoint operator associated with the quadratic

form H'/2E on the form domain D(H'/2E). Hp, is a self-adjoint extension of the

(generally non-closed) operator £ H F.. H 1s defined, and acts nontrivially, on a closed
subspace of E'H.

If then
s-lim {Ee_itH/nE} = s-lim {Ee_itH/n} = s-lim [e_itH/”E} — e ®HE R

uniformly on every compact interval in R.
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A Result by Exner and Ichinose

In the QM case (H separable, H self-adjoint & semibounded, £ orthogonal projection),
a recent result (P Exner, T Ichinose math-ph/0302060) uses properties of the Zeno
generator as a criterion for the existence of Zeno dynamics.

Let Hp = (H'Y/?E)*(H'/?E) be the self-adjoint operator associated with the quadratic

form H'/2E on the form domain D(H'/2E). Hp, is a self-adjoint extension of the

(generally non-closed) operator £ H F.. H 1s defined, and acts nontrivially, on a closed
subspace of E'H.

If then

s-lim {Ee_itH/”E} = s-lim {Ee_itH/n} = s-lim {e_itH/”E} — e ®HE R

n—0oo n—0oo n—0oo

uniformly on every compact interval in R.

Although only applicable to semibounded Hamiltonians, this result yields a much sharper
condition for the existence of Zeno dynamics than AZC, and a more general
characterization of the Zeno dynamics: We had to pose (besides AZC) the stronger
condition that A () contains a dense set of analytic elements for the original
Hamiltonian H .
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Gibbs Equilibria for Zeno Dynamics

If (U, E) satisfies (AZC) for A, then, for every 3 > 0, the set of (T¥, 3)-KMS
states of A coincides with the set of (TY, 3)-KMS states, where T is induced by Ug.
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Gibbs Equilibria for Zeno Dynamics

If (U, E) satisfies (AZC) for A, then, for every 3 > 0, the set of (T¥, 3)-KMS
states of A coincides with the set of (TY, 3)-KMS states, where T is induced by Ug.

Local Gibbs states in quantum spin systems: For A € A(A), Ag, € AN g,,
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Gibbs Equilibria for Zeno Dynamics

If (U, E) satisfies (AZC) for A, then, for every 3 > 0, the set of (T¥, 3)-KMS
states of A coincides with the set of (TY, 3)-KMS states, where T is induced by Ug.

Local Gibbs states in quantum spin systems: For A € A(A), Ag, € AN g,,

def TI‘HA (G_BH(A)A)
N TI’HA (e—ﬁH(A))

N (A)
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Gibbs Equilibria for Zeno Dynamics

If (U, E) satisfies (AZC) for A, then, for every 3 > 0, the set of (T¥, 3)-KMS
states of A coincides with the set of (TY, 3)-KMS states, where T is induced by Ug.

Local Gibbs states in quantum spin systems: For A € A(A), Ag, € AN g,,

e Tipg, (e PENHNE 47 )

T —BH(A) A
e i (¢ ) M7 g (Ag,) ¥
Trp,, (e AEAHIAEL)

WA (A) TrHA (e_ﬁH(A))
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Gibbs Equilibria for Zeno Dynamics

If (U, E) satisfies (AZC) for A, then, for every 3 > 0, the set of (T¥, 3)-KMS
states of A coincides with the set of (TY, 3)-KMS states, where T is induced by Ug.

Local Gibbs states in quantum spin systems: For A € A(A), Ag, € AN g,,

e Tipg, (e PENHNE 47 )

T —BH(A) A
e i (¢ ) M7 g (Ag,) ¥
Trp,, (e AEAHIAEL)

WA (A) TrHA (e_ﬁH(A))

e A of a net of local states wp over A(A), is the

weak* limit of the net of extensions w§ of wy to A.
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Gibbs Equilibria for Zeno Dynamics

If (U, E) satisfies (AZC) for A, then, for every 3 > 0, the set of (T¥, 3)-KMS
states of A coincides with the set of (TY, 3)-KMS states, where T is induced by Ug.

Local Gibbs states in quantum spin systems: For A € A(A), Ag, € AN g,,

def Troyg, (e_ﬁH(A)A) AN def TrHEA (e_ﬁEAH(A)EA AEA)

o (e—BH(A)) wE, (AE,) = TI’HEA (e_gEAH(A)EA)

N (A)

e A of a net of local states wp over A(A), is the
weak* limit of the net of extensions w§ of wy to A.

e If the local dynamics 7* generated by H(A) converges uniformly to an auto-
morphism group of A, then every thermodynamic limit point is a (7, 3)-KMS state.
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Gibbs Equilibria for Zeno Dynamics

If (U, E) satisfies (AZC) for A, then, for every 3 > 0, the set of (T¥, 3)-KMS
states of A coincides with the set of (TY, 3)-KMS states, where T is induced by Ug.

Local Gibbs states in quantum spin systems: For A € A(A), Ag, € AN g,,

I e Tl A
TI‘HA(G BH( )) Try,, (e BENH (M) A)

N (A)

e A of a net of local states wp over A(A), is the
weak* limit of the net of extensions w§ of wy to A.

e If the local dynamics 7* generated by H(A) converges uniformly to an auto-
morphism group of A, then every thermodynamic limit point is a (7, 3)-KMS state.

Let 3 > 0. Let A, — oo be such that the local dynamics converges
uniformly, and the net of local Gibbs states wx_ has a thermodynamic limit point.

If En_ converges in norm to a projection E in A satisfying (AZC),
then wg(Ag) = lim, wg (Ag)isa (%, 8)-KMS state on Ap.
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Domains of Quantum Spin Systems Revisited

Let the interaction be such that the conditions of the Corollary are satisfied.
The local projections were £, .z 4 Iana @ P, , Pr € Ha.
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Domains of Quantum Spin Systems Revisited

Let the interaction be such that the conditions of the Corollary are satisfied.
The local projections were £, .z 4 Iana @ P, , Pr € Ha.

We obtain a (75¢a | 3)-KMS state on A E,, DY

def

’ TI’HA, (exp(—ﬁ ]]-A’\A X P@A H(A/) ]]-A’\A 024 Pq)A)AEQOA;A,)
= 111m

w
E on) A’ =00 Try,, (eXP(—ﬁ Iana ® Po, H(A) Tpna ® P‘I’A))

soA(

where A B, . € A E, ., COnverges in Ato A I
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Domains of Quantum Spin Systems Revisited

Let the interaction be such that the conditions of the Corollary are satisfied.
The local projections were £, .z = Iana @ P, , Pr € Ha.

We obtain a (7¢a | 3)-KMS state on A E,, DY

def

’ TI’HA, (exp(—ﬁ ]]-A’\A X P@A H(A/) ]]-A’\A 024 P¢A)AE¢A;A/)
= 111m

w
E on) A’ =00 Try,, (eXP(—ﬁ Iana ® Po, H(A) Tpna ® P‘I’A))

soA(

where A B, . € A E, ., COnverges in Ato A I

Assume decompositions 4 = Axe ® Ap,and H = > Hpe ; @ Hyp ;.
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Domains of Quantum Spin Systems Revisited

Let the interaction be such that the conditions of the Corollary are satisfied.
The local projections were £, .z <1 AA ® Po,, Pa € Ha.

We obtain a (7¢a | 3)-KMS state on A E,, DY

def

) i TI'HA, (exp(—ﬁ ]]-A’\A (09 P@A H(A/) ]]-A’\A X Pq)A)AEQOA;A,)
= 1111
YA A — o0 TI‘HA, (exp(—ﬁ]lA,\A@)P@A H(A/) ﬂ-A’\A@P@A))

wEsoA(

where A B, . € A B, ., COnverges in Ato A E,,
Assume decompositions 4 = Axe ® Ap,and H = > Hpe ; @ Hyp ;.
i

Then wg,,  1s the Gibbs equilibrium state for the

E°r (H ZHAC o (Hp ;)
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Domains of Quantum Spin Systems Revisited

Let the interaction be such that the conditions of the Corollary are satisfied.
The local projections were £, .z <1 AA ® Po,, Pa € Ha.

We obtain a (7¢a | 3)-KMS state on A E,, DY

b . TI’HA, (exp(—ﬁ ]]-A’\A X P(I)A H(A/) ]]-A’\A X Pq)A)AEQOA;A,)

= lim

w
E on) A’ =00 Try,, (eXP(—ﬁ Iana ® Po, H(A) Tpna ® P‘DA))

soA(

where A B, . € A B, ., COnverges in Ato A E,,
Assume decompositions 4 = Axe ® Ap,and H = > Hpe ; @ Hyp ;.
i

Then wg,,  1s the Gibbs equilibrium state for the
E°r (H ZHAC o (Hp ;)

This state 1s also the strong coupling (A — o0) limit of the Gibbs equilibria for
Hy, = H + Al ®P<I>A
[M Fannes, R F Werner (1995) Helv. Phys. Acta 68 635]
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Example: The X-Y Model 1/3

A spin chain over X = Z, with H, = C?, with observable algebras Appmp,n<me/”

generated by (creation and ‘annihilation operators a,, a,, n < x < m, satisfying CAR

az,ay] =0 =lag,a;], v #y, {az,ay} =1, {az,a:} =0.

def

Global observable algebra A = | J Al_nn]-
neN
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Example: The X-Y Model 1/3

A spin chain over X = Z, with H, = C?, with observable algebras Appmp,n<me/”

generated by and operators a,, a,., n < x < m, satisfying CAR
az,ay] =0 =lag,a;], v #y, {az,ay} =1, {az,a:} =0.

Global observable algebra .4 = U Al_nn]-
neN

m—1

o . e J sk *k — >k
Local Hamiltonians H[n’m] e 5 Z (a,xa,wﬂ + a,xﬂa,m) + h Z A, Q.

r=n r=n
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Example: The X-Y Model 1/3

A spin chain over X = Z, with H, = C?, with observable algebras Appmp,n<me/”

generated by and operators a,, a,., n < x < m, satisfying CAR

az,ay] =0 =lag,a;], v #y, {az,ay} =1, {az,a:} =0.

def

Global observable algebra A = | J Al_nn]-

neN
J m—1 m
Local Hamiltonians Hy,, e 3 Z (a;amﬂ + a;Ha,x) + h Z aGy.
r=—n r=—n

c def +. ] —]
Global dynamics 7;(-) = lim e'*i=nn1 . 7 H=n.n1,

([ nd®.®

€
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Example: The X-Y Model 1/3

A spin chain over X = Z, with H, = C?, with observable algebras Appmp,n<me/”

generated by and operators a,, a,., n < x < m, satisfying CAR

az,ay] =0 =lag,a;], v #y, {az,ay} =1, {az,a:} =0.

Global observable algebra .4 = U Al_nn]-

neN
J m—1 m
5 . def
Local Hamiltonians Hj,, ,,,) = 3 E (a;axﬂ + a;Ham) + h E aGy.
=" ="
5 def 5 1 3
Global dynamics 7;(-) = lim e'*i=nn1 . 7 H=n.n1,

([ nd®.®

(A, 7) is a C*-dynamical system with unique (7, 3)-KMS state given by the weak-* limit
of any increasing net of local Gibbs states, and (A, 7) is asymptotically abelian.

Zeno Dynamics in Quantum Statistical Mechanics — p.18/21



Example: The X-Y Model 1/3

A spin chain over X = Z, with H, = C?, with observable algebras Appmp,n<me/”

generated by and operators a,, a,., n < x < m, satisfying CAR

az,ay] =0 =lag,a;], v #y, {az,ay} =1, {az,a:} =0.

def

Global observable algebra A = | J Al_nn]-

neN
J m—1 m
Local Hamiltonians Hy,, e 3 Z (a;axﬂ + a;Hax) + h Z aGy.
r=—n r=—n

c def +. ] —]
Global dynamics 7;(-) = lim e'*i=nn1 . 7 H=n.n1,

([ nd®.®

€

(A, 7) is a C*-dynamical system with unique (7, 3)-KMS state given by the weak-* limit
of any increasing net of local Gibbs states, and (A, 7) is asymptotically abelian.

def

Choose a state pg € Ho and set E,, = ]1H[_oo,_1] ® Py, ® ]17%[1,00]-
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Example: The X-Y Model 1/3

A spin chain over X = Z, with H, = C?, with observable algebras Appmp,n<me/”

generated by and operators a,, a,., n < x < m, satisfying CAR

az,ay] =0 =lag,a;], v #y, {az,ay} =1, {az,a:} =0.

def

Global observable algebra A = | J Al_nn]-

neN
J m—1 m
Local Hamiltonians Hy,, e 3 Z (a;axﬂ + a;Hax) + h Z aGy.
r=—n r=—n

c def +. ] —]
Global dynamics 7;(-) = lim e'*i=nn1 . 7 H=n.n1,

([ nd®.®

€

(A, 7) is a C*-dynamical system with unique (7, 3)-KMS state given by the weak-* limit
of any increasing net of local Gibbs states, and (A, 7) is asymptotically abelian.

def

Choose a state pg € Ho and set E,, = ]1H[_oo,_1] ® Py, ® ]17%[1,00]-

E

The interaction range is one, and F ,, acts local =—> the Zeno dynamics 770 exists.
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—> The Zeno Hamiltonian decomposes £, HE, = H"” +H{°+ H .

N . N
acts on: H[_ oo, 1] Ho Hi1,00]




Example: The X-Y Model 2/3

—> The Zeno Hamiltonian decomposes £, HE, = H"” +H{°+ H .

N~~~ N~ =~
actson: Hj_ oo 1] Ho Hi1,00]

Explicitly, with H[l,oo] = lim H[l,n]:
A
2

Hgo — hpo(a,gag), H_ﬁ)_o = (,00(0,0)0,1 -+ po(a,o)a,’{) -+ H[l,oo]a HBO similar.
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Example: The X-Y Model 2/3

—> The Zeno Hamiltonian decomposes £, HE, = H"” +H{°+ H .
—~— S N
acts on: H[_ oo, 1] Ho Hi1,00]

Explicitly, with H[l,oo] = lim H[l,n]:

n—0oo

J ..
H{® = hpo(agao), HL = E(po(ao)al + polag)ay) + Hyy o), H? similar.
TrH (e_BH:ip:O Aj:) def ./4
Lateral Gibbs states: w® . (A4) = ) AL e AL =S { [1,00]
pO:B TrH[l’oo] (e—ﬁHiO) A[_OO _1]
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Example: The X-Y Model 2/3

—> The Zeno Hamiltonian decomposes £, HE, = H"” +H{°+ H .
—~  ~— =~

acts on: H[_ oo, 1] Ho Hi1,00]
Explicitly, with H [1,00] = lim H [1,n]"
J .
H{® = hpo(agao), HL = E(po(ao)al + polag)ay) + Hyy o), H? similar.
Tr e PHL 4
Lateral Gibbs states: wp (Ap) = .o = ) VA e AL = {A[1>°°]
TrH[l,oo] (e_ﬁH:I: ) A[—oo —1]

All Zeno observables A E,, € A E,, are of the form

B,y = ZPO(AO,i)A—,i QR Py, ® Ay iy, At € Ax, Ap € Ap.
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Example: The X-Y Model 2/3

—> The Zeno Hamiltonian decomposes £, HE, = H"” +H{°+ H .
—~— S N
acts on: H[_ oo, 1] Ho Hi1,00]

Explicitly, with Hjy o) = lim Hpy -

n—0oo

J
H{® = hpo(agao), HL = 5

(poao)ar + po(ao)ai) + Hp oo, H? similar.

—3HFO
TrH ](e e Ai) c Aj: def {A[l,oo]

Lateral Gibbs states: w™ (Ai) = —
& TrH[l,oo] (e_ﬂHi )

All Zeno observables A E,, € A E,, are of the form

B,y = ZPO(AO,i)A—,i QR Py, ® Ay iy, At € Ax, Ap € Ap.

P
_BHOO

The scalar factor e cancels out 1n the definition of the Gibbs states

= wp,8(AE,, ) = > po(Aoi)w 5(A_)wt (AL,
that1s, wy,,3 = w, 5 ® po @ w;ro gon Ag, is the Zeno-Gibbs equilibrium.
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Physical implications:

—> W), is the unique (7770, 3)-KMS state on Ag, .




Example: The X-Y Model 3/3
Physical implications:
—> W), is the unique (7770, 3)-KMS state on Ag, .

— 7%r0 decouples the left and right subchains.
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Example: The X-Y Model 3/3
Physical implications:
—> W), is the unique (7770, 3)-KMS state on Ag, .

— 7%r0 decouples the left and right subchains.

— H/° are averaged Hamiltonians w.r.t. po = the Zeno dynamics
1mposes on the lateral subchains,
parametrized by the single complex number pq(ag)
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Example: The X-Y Model 3/3
Physical implications:
—> W), is the unique (7770, 3)-KMS state on Ag, .

— 7%r0 decouples the left and right subchains.

— H/° are averaged Hamiltonians w.r.t. po = the Zeno dynamics
1mposes on the lateral subchains,
parametrized by the single complex number pq(ag)

— The difference H — £,  HE,, is a finite combination of a,, a,,, x = 0, 1.
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Example: The X-Y Model 3/3
Physical implications:
—> W), is the unique (7770, 3)-KMS state on Ag, .

— 7%r0 decouples the left and right subchains.
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Example: The X-Y Model 3/3

Physical implications:
—> W), is the unique (7770, 3)-KMS state on Ag, .

— 7P%0 decouples the left and right subchains.

— H/° are averaged Hamiltonians w.r.t. po = the Zeno dynamics
1mposes on the lateral subchains,
parametrized by the single complex number pg(ag)

The difference H — E,, H E,, 1s a finite combination of a,, a,,, z = 0, *1.

E

H - FE, HE,, is bounded, and moreover entire analytic for 7o

I

(Return to equilibrium) The system prepared in the (7, 3)-KMS state

will evolve to the Zeno equilibrium w,, 3, under 770,

— Observation of the state of a single lattice site changes the global equilibrium.
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Summary and Conclusions

® The abstract treatment of the Zeno paradox (Misra & Sudarshan) was transferred to
the context of quantum statistical mechanics (von Neumann algebras, KMS states).
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