7,344 research outputs found

    Space physics missions handbook

    Get PDF
    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science

    Evaluating Descriptive Metrics of the Human Cone Mosaic

    Get PDF
    Purpose: To evaluate how metrics used to describe the cone mosaic change in response to simulated photoreceptor undersampling (i.e., cell loss or misidentification). Methods: Using an adaptive optics ophthalmoscope, we acquired images of the cone mosaic from the center of fixation to 10° along the temporal, superior, inferior, and nasal meridians in 20 healthy subjects. Regions of interest (n = 1780) were extracted at regular intervals along each meridian. Cone mosaic geometry was assessed using a variety of metrics − density, density recovery profile distance (DRPD), nearest neighbor distance (NND), intercell distance (ICD), farthest neighbor distance (FND), percentage of six-sided Voronoi cells, nearest neighbor regularity (NNR), number of neighbors regularity (NoNR), and Voronoi cell area regularity (VCAR). The “performance” of each metric was evaluated by determining the level of simulated loss necessary to obtain 80% statistical power. Results: Of the metrics assessed, NND and DRPD were the least sensitive to undersampling, classifying mosaics that lost 50% of their coordinates as indistinguishable from normal. The NoNR was the most sensitive, detecting a significant deviation from normal with only a 10% cell loss. Conclusions: The robustness of cone spacing metrics makes them unsuitable for reliably detecting small deviations from normal or for tracking small changes in the mosaic over time. In contrast, regularity metrics are more sensitive to diffuse loss and, therefore, better suited for detecting such changes, provided the fraction of misidentified cells is minimal. Combining metrics with a variety of sensitivities may provide a more complete picture of the integrity of the photoreceptor mosaic

    Evaluating Outer Segment Length as A Surrogate Measure of Peak Foveal Cone Density

    Get PDF
    Adaptive optics (AO) imaging tools enable direct visualization of the cone photoreceptor mosaic, which facilitates quantitative measurements such as cone density. However, in many individuals, low image quality or excessive eye movements precludes making such measures. As foveal cone specialization is associated with both increased density and outer segment (OS) elongation, we sought to examine whether OS length could be used as a surrogate measure of foveal cone density. The retinas of 43 subjects (23 normal and 20 albinism; aged 6–67 years) were examined. Peak foveal cone density was measured using confocal adaptive optics scanning light ophthalmoscopy (AOSLO), and OS length was measured using optical coherence tomography (OCT) and longitudinal reflectivity profile-based approach. Peak cone density ranged from 29,200 to 214,000 cones/mm2(111,700 ± 46,300 cones/mm2); OS length ranged from 26.3 to 54.5 μm (40.5 ± 7.7 μm). Density was significantly correlated with OS length in albinism (p \u3c 0.0001), but not normals (p = 0.99). A cubic model of density as a function of OS length was created based on histology and optimized to fit the albinism data. The model includes triangular cone packing, a cylindrical OS with a fixed volume of 136.6 μm3, and a ratio of OS to inner segment width that increased linearly with increasing OS length (R2 = 0.72). Normal subjects showed no apparent relationship between cone density and OS length. In the absence of adequate AOSLO imagery, OS length may be used to estimate cone density in patients with albinism. Whether this relationship exists in other patient populations with foveal hypoplasia (e.g., premature birth, aniridia, isolated foveal hypoplasia) remains to be seen

    Chaos in Time Dependent Variational Approximations to Quantum Dynamics

    Full text link
    Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first show that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos correcte

    The Incidence of Low-Metallicity Lyman-Limit Systems at z~3.5: Implications for the Cold-Flow Hypothesis of Baryonic Accretion

    Get PDF
    Cold accretion is a primary growth mechanism of simulated galaxies, yet observational evidence of "cold flows" at redshifts where they should be most efficient (z=2z=2-4) is scarce. In simulations, cold streams manifest as Lyman-limit absorption systems (LLSs) with low heavy-element abundances similar to those of the diffuse IGM. Here we report on an abundance survey of 17 H I-selected LLSs at z=3.2z=3.2-4.4 which exhibit no metal absorption in SDSS spectra. Using medium-resolution spectra obtained at Magellan, we derive ionization-corrected metallicities (or limits) with a Markov-Chain Monte Carlo sampling that accounts for the large uncertainty in NHIN_{\rm HI} measurements typical of LLSs. The metal-poor LLS sample overlaps with the IGM in metallicity and is best described by a model where 7111+13%71^{+13}_{-11}\% are drawn from the IGM chemical abundance distribution. These represent roughly half of all LLSs at these redshifts, suggesting that 28-40%\% of the general LLS population at z3.7z\sim3.7 could trace unprocessed gas. An ancillary sample of ten LLSs without any a priori metal-line selection is best fit with 4812+14%48^{+14}_{-12}\% of metallicities drawn from the IGM. We compare these results with regions of a moving-mesh simulation; the simulation finds only half as many baryons in IGM-metallicity LLSs, and most of these lie beyond the virial radius of the nearest galaxy halo. A statistically significant fraction of all LLSs have low metallicity and therefore represent candidates for accreting gas; large-volume simulations can establish what fraction of these candidates actually lie near galaxies and the observational prospects for detecting the presumed hosts in emission.Comment: 19 pages, 17 figures; Submitted to ApJ; Corrected figure 16

    Assessing the Spatial Relationship Between Fixation and Foveal Specializations

    Get PDF
    Increased cone photoreceptor density, an avascular zone (FAZ), and the displacement of inner retinal neurons to form a pit are distinct features of the human fovea. As the fovea provides the majority of our vision, appreciating how these anatomical specializations are related is important for understanding foveal development, normal visual function, and retinal disease. Here we evaluated the relationship between these specializations and their location relative to the preferred retinal locus of fixation (PRL). We measured foveal pit volume, FAZ area, peak cone density, and location of the PRL in 22 subjects with normal vision using optical coherence tomography and adaptive optics scanning light ophthalmoscopy. Foveal pit volume was positively correlated with FAZ area; however, peak cone density was not correlated with pit volume. In addition, there was no systematic offset of the location of any of these specializations relative to PRL, and there was no correlation between the magnitude of the offset from PRL and the corresponding foveal specialization measurements (pit volume, FAZ area, peak cone density). The standard deviation of our PRL measurements was consistent with previous measurements of fixational stability. These data provide insight into the sequence of events during foveal development and may have implications for visual function and retinal disease

    Notice of complaint, 1 December 1868

    Get PDF
    https://egrove.olemiss.edu/aldrichcorr_d/1187/thumbnail.jp

    Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer

    Get PDF
    Prostate cancer (PCa) is no exception to the multi-step process of metastasis. As PCa progresses, changes occur within the microenvironments of both the malignant cells and their targeted site of metastasis, enabling the necessary responses that result in successful translocation. The majority of patients with progressing prostate cancers develop skeletal metastases. Despite advancing efforts in early detection and management, there remains no effective, long-term cure for metastatic PCa. Therefore, the elucidation of the mechanism of PCa metastasis and preferential establishment of lesions in bone is an intensive area of investigation that promises to generate new targets for therapeutic intervention. This review will survey what is currently know concerning PCa interaction with the extracellular matrix (ECM) and the roles of factors within the tumor and ECM microenvironments that contribute to metastasis. These will be discussed within the context of changes in expression and functional heterodimerization patterns of integrins, changes in ECM expression and reorganization by proteases facilitating invasion. In this context we also provide a brief summary of how growth factors (GFs), cytokines and regulatory signaling pathways favor PCa metastasis to bone
    corecore