73 research outputs found

    Long-term outcome of chronic dialysis in children

    Get PDF
    As the prevalence of children on renal replacement therapy (RRT) increases world wide and such therapy comprises at least 2% of any national dialysis or transplant programme, it is essential that paediatric nephrologists are able to advise families on the possible outcome for their child on dialysis. Most children start dialysis with the expectation that successful renal transplantation is an achievable goal and will provide the best survival and quality of life. However, some will require long-term dialysis or may return intermittently to dialysis during the course of their chronic kidney disease (CKD). This article reviews the available outcome data for children on chronic dialysis as well as extrapolating data from the larger adult dialysis experience to inform our paediatric practice. The multiple factors that may influence outcome, and, particularly, those that can potentially be modified, are discussed

    A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching

    Full text link
    The “hierarchical model” proposed earlier [Larson in Macromolecules 34:4556–4571, 2001] is herein modified by inclusion of early time fluctuations and other refinements drawn from the theories of Milner and McLeish for more quantitative prediction. The hierarchical model predictions are then compared with experimental linear viscoelastic data of well-defined long chain branched 1,4-polybutadienes and 1,4-polyisoprenes using a single set of parameter values for each polymer, which are obtained from experimental data for monodisperse linear and star polymers. For a wide range of monodisperse branched polymer melts, the predictions of the hierarchical model for monodisperse melts are very similar to those of the Milner–McLeish theories, and agree well with experimental data for many, but not all, of the branched polymer samples. Since the modified hierarchical model accounts for arbitrary polydispersity in molecular weight and branching distributions, which is not accounted for in the Milner–McLeish theories, the hierarchical algorithm is a promising one for predicting the relaxation of general mixtures of branched polymers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47217/1/397_2004_Article_415.pd

    CKD-MBD after kidney transplantation

    Get PDF
    Successful kidney transplantation corrects many of the metabolic abnormalities associated with chronic kidney disease (CKD); however, skeletal and cardiovascular morbidity remain prevalent in pediatric kidney transplant recipients and current recommendations from the Kidney Disease Improving Global Outcomes (KDIGO) working group suggest that bone disease—including turnover, mineralization, volume, linear growth, and strength—as well as cardiovascular disease be evaluated in all patients with CKD. Although few studies have examined bone histology after renal transplantation, current data suggest that bone turnover and mineralization are altered in the majority of patients and that biochemical parameters are poor predictors of bone histology in this population. Dual energy X-ray absorptiometry (DXA) scanning, although widely performed, has significant limitations in the pediatric transplant population and values have not been shown to correlate with fracture risk; thus, DXA is not recommended as a tool for the assessment of bone density. Newer imaging techniques, including computed tomography (quantitative CT (QCT), peripheral QCT (pQCT), high resolution pQCT (HR-pQCT) and magnetic resonance imaging (MRI)), which provide volumetric assessments of bone density and are able to discriminate bone microarchitecture, show promise in the assessment of bone strength; however, future studies are needed to define the value of these techniques in the diagnosis and treatment of renal osteodystrophy in pediatric renal transplant recipients

    Polycystic ovary syndrome

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.Robert J Norman, Ruijin Wu and Marcin T Stankiewic

    Mass spectrometry imaging for plant biology: a review

    Get PDF

    Voedingsadvies bij nierlijden

    No full text

    Comparison between gamma and beta irradiation effects on hydroxypropylmethylcellulose and gelatin hard capsules

    No full text
    The effects of electron beam or λ-irradiation on technological performances (capsule hardness, expressed as deforming work and dissolution time) of empty 2-shell capsules made of gelatin or hydroxypropylmethylcellulose (HPMC) were studied. Capsule structural changes induced by radiation treatment were investigated by capillary viscometry and atomic force microscopy (AFM). The capsules were irradiated in the air at 5, 15, and 25 kGy. The deforming work of nonirradiated HPMC capsules (0.06±0.01 J) was lower than that of gelatin capsules (0.10±0.01 J). The dissolution time of the HPMC capsules (414±33 seconds) was slightly higher than that determined for gelatin hard capsules (288±19 seconds). The hardness and dissolution time of gelatin and HPMC capsules were not significantly influenced by the irradiation type and the applied irradiation dose. As the viscometry analyses are concerned, irradiation caused a reduction of the intrinsic viscosity and water and dimethyl sulfoxide solvent power in both the cases. AFM analysis showed that the radiation treatment did not appreciably affect the surface roughness of the samples nor induce structural changes on capsule surface. However, measurements of force-distance curves pointed out a qualitative parameter for the identification of the irradiated capsules. On the bases of these preliminary results, empty gelatin or HPMC hard capsules can be sanitized/sterilized by ionizing radiation
    corecore