39 research outputs found

    Plasma apolipoprotein J as a potential biomarker for Alzheimer\u27s disease: Australian Imaging, Biomarkers and Lifestyle study of aging

    Get PDF
    Introduction: For early detection of Alzheimer\u27s disease (AD), the field needs biomarkers that can be used to detect disease status with high sensitivity and specificity. Apolipoprotein J (ApoJ, also known as clusterin) has long been associated with AD pathogenesis through various pathways. The aim of this study was to investigate the potential of plasma apoJ as a blood biomarker for AD. Methods: Using the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, the present study assayed plasma apoJ levels over baseline and 18 months in 833 individuals. Plasma ApoJ levels were analyzed with respect to clinical classification, age, gender, apolipoprotein E (APOE) ε4 allele status, mini-mental state examination score, plasma amyloid beta (Aβ), neocortical Aβ burden (as measured by Pittsburgh compound B-positron emission tomography), and total adjusted hippocampus volume. Results: ApoJ was significantly higher in both mild cognitive impairment (MCI) and AD groups as compared with healthy controls (HC; P \u3c .0001). ApoJ significantly correlated with both standardized uptake value ratio (SUVR) and hippocampus volume and weakly correlated with the plasma Aβ1-42/Aβ1-40 ratio. Plasma apoJ predicted both MCI and AD from HC with greater than 80% accuracy for AD and greater than 75% accuracy for MCI at both baseline and 18-month time points. Discussion: Mean apoJ levels were significantly higher in both MCI and AD groups. ApoJ was able to differentiate between HC with high SUVR and HC with low SUVR via APOE ε4 allele status, indicating that it may be included in a biomarker panel to identify AD before the onset of clinical symptoms. © 2016 The Authors

    Cockayne Syndrome Group B (Csb) and Group A (Csa) Deficiencies Predispose to Hearing Loss and Cochlear Hair Cell Degeneration in Mice

    No full text
    Sensory hair cells in the cochlea, like most neuronal populations that are postmitotic, terminally differentiated, and non-regenerating, depend on robust mechanisms of self-renewal for lifelong survival. We report that hair cell homeostasis requires a specific sub-branch of the DNA damage nucleotide excision repair pathway, termed transcription-coupled repair (TCR). Cockayne syndrome (CS), caused by defects in TCR, is a rare DNA repair disorder with a broad clinical spectrum that includes sensorineural hearing loss. We tested hearing and analyzed the cellular integrity of the organ of Corti in two mouse models of this disease with mutations in the Csb gene (CSBm/m mice) and Csa gene (Csa(-/-) mice), respectively. Csb(m/m) and Csa(-/-) mice manifested progressive hearing loss, as measured by an increase in auditory brainstem response thresholds. In contrast to wild-type mice, mutant mice showed reduced or absent otoacoustic emissions, suggesting cochlear outer hair cell impairment. Hearing loss in Csb(m/m) and Csa(-/-) mice correlated with progressive hair cell loss in the base of the organ of Corti, starting between 6 and 13 weeks of age, which increased by 16 weeks of age in a basal-to-apical gradient, with outer hair cells more severely affected than inner hair cells. Our data indicate that the hearing loss observed in CS patients is reproduced in mouse models of this disease. We hypothesize that accumulating DNA damage, secondary to the loss of TCR, contributes to susceptibility to hearing loss

    Evaluation of Cholinergic Deficiency in Preclinical Alzheimer's Disease Using Pupillometry

    Get PDF
    Cortical cholinergic deficiency is prominent in Alzheimer's disease (AD), and published findings of diminished pupil flash response in AD suggest that this deficiency may extend to the visual cortical areas and anterior eye. Pupillometry is a low-cost, noninvasive technique that may be useful for monitoring cholinergic deficits which generally lead to memory and cognitive disorders. The aim of the study was to evaluate pupillometry for early detection of AD by comparing the pupil flash response (PFR) in AD (N = 14) and cognitively normal healthy control (HC, N = 115) participants, with the HC group stratified according to high (N = 38) and low (N = 77) neocortical amyloid burden (NAB). Constriction phase PFR parameters were significantly reduced in AD compared to HC (maximum acceleration p < 0.05, maximum velocity p < 0.0005, average velocity p < 0.005, and constriction amplitude p < 0.00005). The high-NAB HC subgroup had reduced PFR response cross-sectionally, and also a greater decline longitudinally, compared to the low-NAB subgroup, suggesting changes to pupil response in preclinical AD. The results suggest that PFR changes may occur in the preclinical phase of AD. Hence, pupillometry has a potential as an adjunct for noninvasive, cost-effective screening for preclinical AD

    Comparative analysis of the Cancer Council of Victoria and the online Commonwealth Scientific and Industrial Research Organisation FFQ

    No full text
    FFQ are commonly used to examine the association between diet and disease. They are the most practical method for usual dietary data collection as they are relatively inexpensive and easy to administer. In Australia, the Cancer Council of Victoria FFQ (CCVFFQ) version 2 and the online Commonwealth Scientific and Industrial Research Organisation FFQ (CSIROFFQ) are used. The aim of our study was to establish the level of agreement between nutrient intakes captured using the online CSIROFFQ and the paper-based CCVFFQ. The CCVFFQ and the online CSIROFFQ were completed by 136 healthy participants. FFQ responses were analysed to give g per d intake of a range of nutrients. Agreement between twenty-six nutrient intakes common to both FFQ was measured by a variety of methods. Nutrient intake levels that were significantly correlated between the two FFQ were carbohydrates, total fat, Na and MUFA. When assessing ranking of nutrients into quintiles, on average, 56 % of the participants (for all nutrients) were classified into the same or adjacent quintiles in both FFQ, with the highest percentage agreement for sugar. On average, 21 % of participants were grossly misclassified by three or four quintiles, with the highest percentage misclassification for fibre and Fe. Quintile agreement was similar to that reported by other studies, and we concluded that both FFQ are suitable tools for dividing participants' nutrient intake levels into high- and low-consumption groups. Use of either FFQ was not appropriate for obtaining accurate estimates of absolute nutrient intakes

    Elecsys CSF biomarker immunoassays demonstrate concordance with amyloid-PET imaging

    Get PDF
    BACKGROUND: β-amyloid (Aβ) positron emission tomography (PET) imaging is currently the only Food and Drug Administration-approved method to support clinical diagnosis of Alzheimer's disease (AD). However, numerous research studies support the use of cerebrospinal fluid (CSF) biomarkers, as a cost-efficient, quick and equally valid method to define AD pathology. METHODS: Using automated Elecsys® assays (Roche Diagnostics) for Aβ (1-42) (Aβ42), Aβ (1-40) (Aβ40), total tau (tTau) and phosphorylated tau (181P) (pTau), we examined CSF samples from 202 participants of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of ageing cohort, to demonstrate the concordance with pathological AD via PET imaging. RESULTS: Ratios Aβ42/Aβ40, tTau/Aβ42 and pTau/Aβ42 had higher receiver operator characteristic-area under the curve (all 0.94), and greater concordance with Aβ-PET (overall percentage agreement ~ 90%), compared with individual biomarkers. CONCLUSION: Strong concordance between CSF biomarkers and Aβ-PET status was observed overall, including for cognitively normal participants, further strengthening the association between these markers of AD neuropathological burden for both developmental research studies and for use in clinical trials

    Metabolic and Genetic Diversity of Mesophilic and Thermophilic Bacteria Isolated from Composted Municipal Sludge on Poly-e-caprolactones

    Get PDF
    Thirty mesophilic and thermophilic bacteria were isolated from thermobiotically digested sewage sludge in culture medium supplemented with poly-e-caprolactone (PCL). The ability of each purified isolate to degrade PCL and to produce polymer-degrading extracellular enzymes was assessed. Isolates were characterized based on random amplified polymorphic DNA (RAPD), 16S rDNA sequence-based phylogenetic affiliation and carbohydrate-based nutritional versatility. Mesophilic isolates with ability to degrade PCL were attributed to the genera Acinetobacter, Burkholderia, Pseudomonas, and Staphylococcus. Thermophilic isolates were members of the genus Bacillus. Despite the restricted phylogenetic and genotypic diversity observed for thermophiles, their metabolic versatility and wide range of growth temperatures suggest an important activity of these organisms during the whole composting process

    Influence of BDNF Val66Met on the relationship between physical activity and brain volume

    No full text
    OBJECTIVE: To investigate the association between habitual physical activity levels and brain temporal lobe volumes, and the interaction with the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism. METHODS: This study is a cross-sectional analysis of 114 cognitively healthy men and women aged 60 years and older. Brain volumes quantified by MRI were correlated with self-reported physical activity levels. The effect of the interaction between physical activity and the BDNF Val66Met polymorphism on brain structure volumes was assessed. Post hoc analyses were completed to evaluate the influence of the APOE ε4 allele on any found associations. RESULTS: The BDNF Val66Met polymorphism interacted with physical activity to be associated with hippocampal (β = -0.22, p = 0.02) and temporal lobe (β = -0.28, p = 0.003) volumes. In Val/Val homozygotes, higher levels of physical activity were associated with larger hippocampal and temporal lobe volumes, whereas in Met carriers, higher levels of physical activity were associated with smaller temporal lobe volume. CONCLUSION: The findings from this study support higher physical activity levels in the potential attenuation of age- and disease-related hippocampal and temporal lobe volume loss in Val/Val homozygotes

    COMT val158met is not associated with A beta-amyloid and APOE epsilon 4 related cognitive decline in cognitively normal older adults

    No full text
    The non-synonymous single nucleotide polymorphism (SNP), Val158Met within the Catechol-O-methyltransferase (COMT) gene has been associated with altered levels of cognition and memory performance in cognitively normal adults. This study aimed to investigate the independent and interactional effects of COMT Val158Met on cognitive performance. In particular, it was hypothesised that COMT Val158Met would modify the effect of neocortical Aβ-amyloid (Aβ) accumulation and carriage of the apolipoprotein E (APOE) ε4 allele on cognition in preclinical Alzheimer's disease (AD). In 598 cognitively normal older adults with known neocortical Aβ levels, linear mixed modelling revealed no significant independent or interactional associations between COMT Val158Met and cognitive decline. These findings do not support previous associations between COMT Val158Met and cognitive performance and suggest this variant does not influence Aβ-amyloid or APOE ε4 driven cognitive decline in a well characterised cohort of cognitively normal older adults
    corecore