17 research outputs found

    Genetic indicators of iron limitation in wild populations of \u3cem\u3eThalassiosira oceanica\u3c/em\u3e from the northeast Pacific Ocean

    Get PDF
    Assessing the iron (Fe) nutritional status of natural diatom populations has proven challenging as physiological and molecular responses can differ in diatoms of the same genus. We evaluated expression of genes encoding flavodoxin (FLDA1) and an Fe-starvation induced protein (ISIP3) as indicators of Fe limitation in the marine diatom Thalassiosira oceanica. The specificity of the response to Fe limitation was tested in cultures grown under Fe- and macronutrient-deficient conditions, as well as throughout the diurnal light cycle. Both genes showed a robust and specific response to Fe limitation in laboratory cultures and were detected in small volume samples collected from the northeast Pacific, demonstrating the sensitivity of this method. Overall, FLDA1 and ISIP3 expression was inversely related to Fe concentrations and offered insight into the Fe nutritional health of T. oceanica in the field. As T. oceanica is a species tolerant to low Fe, indications of Fe limitation in T. oceanica populations may serve as a proxy for severe Fe stress in the overall diatom community. At two shallow coastal locations, FLD1A and ISIP3 expression revealed Fe stress in areas where dissolved Fe concentrations were high, demonstrating that this approach may be powerful for identifying regions where Fe supply may not be biologically available

    Oral bisphosphonate-related osteonecrosis of the jaws in rheumatoid arthritis patients: a critical discussion and two case reports

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a clinical condition characterized by the presence of exposed bone in the maxillofacial region. Its pathogenesis is still undetermined, but may be associated with risk factors such as rheumatoid arthritis (RA). The aim of this paper is to report two unpublished cases of BRONJ in patients with RA and to conduct a literature review of similar clinical cases with a view to describe the main issues concerning these patients, including demographic characteristics and therapeutic approaches applied.</p> <p>Methods</p> <p>Two case reports of BRONJ involving RA patients were discussed</p> <p>Results</p> <p>Both patients were aging female taking alendronate for more than 3 years. Lesions were detected in stage II in posterior mandible with no clear trigger agent. The treatment applied consisted of antibiotics, oral rinses with chlorhexidine, drug discontinuation and surgical procedures. Complete healing of the lesions was achieved.</p> <p>Conclusions</p> <p>This paper brings to light the necessity for rheumatologists to be aware of the potential risk to their patients of developing BRONJ and to work together with dentists for the prevention and early detection of the lesions. Although some features seem to link RA with oral BRONJ and act as synergistic effects, more studies should be developed to support the scientific bases for this hypothesis.</p

    Carbon fixation in diatoms

    No full text
    Diatoms are unicellular photoautotrophic algae and very successful primary producers in the oceans. Their high primary productivity is probably sustained by their high adaptability and a uniquely arranged metabolism. Diatom belongs to the Chromista, a large eukaryotic group, which has evolved by multiple endosymbiotic steps. As a result, diatoms possess a plastids with four membranes together with complicated translocation systems to transport proteins and metabolites including inorganic substances into and out of the plastids. In addition to the occurrence of potential plasma-membrane transporters, there are numerous carbonic anhydrases (CAs) within the matrix of the layered plastidic membranes, strongly suggesting large interconversion activity between CO2 and HCO3 − within the chloroplast envelope as a part of a CO2-concentrating mechanism (CCM). In diatoms also the Calvin cycle and its adjacent metabolism reveal unique characteristics as, for instance, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activase, the plastidic sedoheptulose-1,7-bisphosphatase (SBPase), and the plastidic oxidative pentose phosphate pathway (OPP) are absent. Furthermore, the Calvin cycle metabolism in diatoms is not under the strict redox control by the thioredoxin (Trx) system. Instead, a CO2-supplying system in the pyrenoid shows CA activities which are probably regulated by chloroplastic Trxs. Pyrenoidal CAs are also regulated on the transcriptional level by CO2 concentrations via cAMP as a second messenger, suggesting an intense control system of CO2 acquisition in response to CO2 availability. The photorespiratory carbon oxidation cycle (PCOC) is the major pathway to recycle phosphoglycolate in diatoms although this process might not be involved in recycling of 3-phosphoglycerate but instead produces glycine and serine. In this review we focus on recent experimental data together with supportive genome information of CO2 acquisition and fixation systems primarily in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana
    corecore