28 research outputs found

    Mobile element insertions in rare diseases: a comparative benchmark and reanalysis of 60,000 exome samples

    Get PDF
    Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES

    An Evolutionarily Conserved Enhancer Regulates Bmp4 Expression in Developing Incisor and Limb Bud

    Get PDF
    To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium

    Early influences on cardiovascular and renal development

    Get PDF
    The hypothesis that a developmental component plays a role in subsequent disease initially arose from epidemiological studies relating birth size to both risk factors for cardiovascular disease and actual cardiovascular disease prevalence in later life. The findings that small size at birth is associated with an increased risk of cardiovascular disease have led to concerns about the effect size and the causality of the associations. However, recent studies have overcome most methodological flaws and suggested small effect sizes for these associations for the individual, but an potential important effect size on a population level. Various mechanisms underlying these associations have been hypothesized, including fetal undernutrition, genetic susceptibility and postnatal accelerated growth. The specific adverse exposures in fetal and early postnatal life leading to cardiovascular disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life may underlie the complex associations of fetal growth retardation and low birth weight with cardiovascular disease in later life. To estimate the population effect size and to identify the underlying mechanisms, well-designed epidemiological studies are needed. This review is focused on specific adverse fetal exposures, cardiovascular adaptations and perspectives for new studies. Copyrigh

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses

    Early influences on cardiovascular and renal development

    Full text link

    Fungal feelings in the irritable bowel syndrome: the intestinal mycobiome and abdominal pain

    No full text
    ABSTRACTAlthough the gut microbiota consists of bacteria, viruses, and fungi, most publications addressing the microbiota-gut-brain axis in irritable bowel syndrome (IBS) have a sole focus on bacteria. This may relate to the relatively low presence of fungi and viruses as compared to bacteria. Yet, in the field of inflammatory bowel disease research, the publication of several papers addressing the role of the intestinal mycobiome now suggested that these low numbers do not necessarily translate to irrelevance. In this review, we discuss the available clinical and preclinical IBS mycobiome data, and speculate how these recent findings may relate to earlier observations in IBS. By surveying literature from the broader mycobiome research field, we identified questions open to future IBS-oriented investigations

    Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo.

    No full text
    Vitiligo is an autoimmune condition characterized by loss of epidermal melanocytes. High frequencies of melanocyte-reactive cytotoxic T cells in the peripheral blood of vitiligo patients and the observed correlation between perilesional T-cell infiltration and melanocyte loss in situ suggest the important role of cellular autoimmunity in the pathogenesis of this disease. We isolated T cells from both perilesional and nonlesional skin biopsies obtained from five vitiligo patients, then cloned and analyzed their profile of cytokine production after short-term, nonspecific expansion in vitro. Perilesional T-cell clones (TCC) derived from patients with vitiligo exhibited a predominant Type-1-like cytokine secretion profile, whereas the degree of Type-1 polarization in uninvolved skin-derived TCC correlated with the process of microscopically observed melanocyte destruction in situ. Detailed analysis of broad spectrum of cytokines produced by perilesional- and nonlesional-derived CD4+ and CD8+ TCC confirmed polarization toward Type-1-like in both CD4 and CD8 compartments, which paralleled depigmentation process observed locally in the skin. Furthermore, CD8+ TCC derived from two patients also were analyzed for reactivity against autologous melanocytes. The antimelanocyte cytotoxic reactivity was observed among CD8+ TCC isolated from perilesional biopsies of two patients with vitiligo. Finally, in two of five patients, tetramer analysis revealed presence of high frequencies of Mart-1-specific CD8 T cells in T-cell lines derived from perilesional skin. Altogether our data support the role of cellular mechanisms playing a significant part in the destruction of melanocytes in human autoimmune vitiligo

    Altered brain activation to colorectal distention in visceral hypersensitive maternal-separated rats

    No full text
    Background  Early life trauma can predispose to increased visceral pain perception. Human neuroimaging studies emphasize that altered brain processing may contribute to increased visceral sensitivity. The aim of our study was to evaluate brain responses to painful visceral stimuli in maternal-separated rats before and after acute stress exposure in vivo. Methods  H(2) (15) O microPET scanning was performed during colorectal distention in maternal-separated rats before and after water avoidance stress. Brain images were anatomically normalized to Paxinos space and analyzed by voxel-based statistical parametric mapping (SPM2). Colorectal induced visceral pain was assessed by recording of the visceromotor response using abdominal muscle electromyography. Key Results  Colorectal distention (1.0-2.0 mL) evoked a volume-dependent increase in visceromotor response in maternal-separated rats. Stress [water avoidance (WA)] induced an increased visceromotor response to colorectal distention in awake and anesthetized rats. In pre-WA rats, colorectal distention evoked significant increases in regional blood flow in the cerebellum and periaquaductal gray (PAG). Colorectal distention post-WA revealed activation clusters covering the PAG as well as somatosensory cortex and hippocampus. At maximal colorectal distention, the frontal cortex was significantly deactivated. Conclusions & Inferences  WA stress induced increased pain perception as well as activation of the somatosensory cortex, PAG, and hippocampus in maternal-separated rats. These findings are in line with human studies and provide indirect evidence that the maternal separation model mimics the cerebral response to visceral hypersensitivity in humans.status: publishe
    corecore