1,760 research outputs found

    Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene

    Full text link
    An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale 3D printing, catalysis, and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete angstrom-sized pores in monolayer graphene can be detected and then controlled using nanometer-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog

    Proactive and politically skilled professionals: What is the relationship with affective occupational commitment?

    Get PDF
    The aim of this study is to extend research on employee affective commitment in three ways: (1) instead of organizational commitment the focus is on occupational commitment; (2) the role of proactive personality on affective occupational commitment is examined; and (3) occupational satisfaction is examined as a mediator and political skills as moderator in the relationship between proactive personality and affective occupational commitment. Two connected studies, one in a hospital located in the private sector and one in a university located in the public sector, are carried out in Pakistan, drawing on a total sample of over 400 employees. The results show that proactive personality is positively related to affective occupational commitment, and that occupational satisfaction partly mediates the relationship between proactive personality and affective occupational commitment. No effect is found for a moderator effect of political skills in the relationship between proactive personality and affective occupational commitment. Political skills however moderate the relationship between proactive personality and affective organizational commitment

    A genotype-guided strategy for oral P2Y₁₂ Inhibitors in primary PCI

    Get PDF
    BACKGROUND: It is unknown whether patients undergoing primary percutaneous coronary intervention (PCI) benefit from genotype-guided selection of oral P2Y12 inhibitors. METHODS: We conducted a randomized, open-label, assessor-blinded trial in which patients undergoing primary PCI with stent implantation were assigned in a 1:1 ratio to receive either a P2Y12 inhibitor on the basis of early CYP2C19 genetic testing (genotype-guided group) or standard treatment with either ticagrelor or prasugrel (standard-treatment group) for 12 months. In the genotype-guided group, carriers of CYP2C19*2 or CYP2C19*3 loss-of-function alleles received ticagrelor or prasugrel, and noncarriers received clopidogrel. The two primary outcomes were net adverse clinical events - defined as death from any cause, myocardial infarction, definite stent thrombosis, stroke, or major bleeding defined according to Platelet Inhibition and Patient Outcomes (PLATO) criteria - at 12 months (primary combined outcome; tested for noninferiority, with a noninferiority margin of 2 percentage points for the absolute difference) and PLATO major or minor bleeding at 12 months (primary bleeding outcome). RESULTS: For the primary analysis, 2488 patients were included: 1242 in the genotype-guided group and 1246 in the standard-treatment group. The primary combined outcome occurred in 63 patients (5.1%) in the genotype-guided group and in 73 patients (5.9%) in the standard-treatment group (absolute difference, -0.7 percentage points; 95% confidence interval [CI], -2.0 to 0.7; P<0.001 for noninferiority). The primary bleeding outcome occurred in 122 patients (9.8%) in the genotype-guided group and in 156 patients (12.5%) in the standard-treatment group (hazard ratio, 0.78; 95% CI, 0.61 to 0.98; P = 0.04). CONCLUSIONS: In patients undergoing primary PCI, a CYP2C19 genotype-guided strategy for selection of oral P2Y12 inhibitor therapy was noninferior to standard treatment with ticagrelor or prasugrel at 12 months with respect to thrombotic events and resulted in a lower incidence of bleeding. (Funded by the Netherlands Organization for Health Research and Development; POPular Genetics ClinicalTrials.gov number, NCT01761786; Netherlands Trial Register number, NL2872.)

    Behavior Problems in Relation to Sustained Selective Attention Skills of Moderately Preterm Children

    Get PDF
    Attention skills may form an important developmental mechanism. A mediation model was examined in which behavioral problems of moderately preterm and term children at school age are explained by attention performance. Parents and teachers completed behavioral assessments of 348 moderately preterm children and 182 term children at 8 years of age. Children were administered a test of sustained selective attention. Preterm birth was associated with more behavioral and attention difficulties. Gestational age, prenatal maternal smoking, and gender were associated with mothers’, fathers’, and teachers’ reports of children’s problem behavior. Sustained selective attention partially mediated the relationship between birth status and problem behavior. Development of attention skills should be an important focus for future research in moderately preterm children

    ALS/FTD-associated FUS activates GSK-3 to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations

    Get PDF
    Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB–PTPIP51 interaction and ER–mitochondria associations. These disruptions are accompanied by perturbation of Ca2+ uptake by mitochondria following its release from ER stores, which is a physiological read‐out of ER–mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS‐expressing cells; mitochondrial ATP production is linked to Ca2+ levels. Finally, we demonstrate that the FUS‐induced reductions to ER–mitochondria associations and are linked to activation of glycogen synthase kinase‐3β (GSK‐3β), a kinase already strongly associated with ALS/FTD

    ER-mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms.

    Get PDF
    Funder: Open Targets OTAR050 UK Dementia Research Institute RRZA/175Mitochondria-ER contact sites (MERCS) are known to underpin many important cellular homoeostatic functions, including mitochondrial quality control, lipid metabolism, calcium homoeostasis, the unfolded protein response and ER stress. These functions are known to be dysregulated in neurodegenerative diseases, including Parkinson's disease (PD), Alzheimer's disease (AD) and amyloid lateral sclerosis (ALS), and the number of disease-related proteins and genes being associated with MERCS is increasing. However, many details regarding MERCS and their role in neurodegenerative diseases remain unknown. In this review, we aim to summarise the current knowledge regarding the structure and function of MERCS, and to update the field on current research in PD, AD and ALS. Furthermore, we will evaluate high-throughput screening techniques, including RNAi vs CRISPR/Cas9, pooled vs arrayed formats and how these could be combined with current techniques to visualise MERCS. We will consider the advantages and disadvantages of each technique and how it can be utilised to uncover novel protein pathways involved in MERCS dysfunction in neurodegenerative diseases

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Hybrid materials for molecular sieves

    Get PDF
    Hybrid microporous organosilica membranes for molecular separations made by acid-catalyzed solgel synthesis from bridged silsesquioxane precursors have demonstrated good performance in terms of flux and selectivity and remarkable hydrothermal stability in various pervaporation and gas separation processes. The availability of wide range of α,ω-bis(trialkoxysilyl)alkane and 1,4-bis (triethoxysilyl)benzene precursors allows tuning of membrane properties such as pore size and chemistry. This chapter presents an overview of the synthesis and application of hybrid organosilica microporous membranes in liquid and gas separation processes. After a concise discussion of the history of solgel-derived microporous ceramic membranes for molecular separations, the solgel chemistry of bridged silsesquioxanes and all relevant processing steps needed to obtain a supported microporous films suitable for molecular separations are discussed. The performance of these membranes is correlated with the membrane compositional properties, such as nature, stiffness and length of the bridging group, and details of the solgel process

    Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor cell contamination of the apheresis in multiple myeloma is likely to affect disease-free and overall survival after autografting.</p> <p>Objective</p> <p>To purge myeloma aphereses from tumor contaminants with a novel culture-based purging method.</p> <p>Methods</p> <p>We cultured myeloma-positive CD34<sup>+ </sup>PB samples in conditions that retained multipotency of hematopoietic stem cells, but were unfavourable to survival of plasma cells. Moreover, we exploited the resistance of myeloma plasma cells to retroviral transduction by targeting the hematopoietic CD34<sup>+ </sup>cell population with a retroviral vector carrying a selectable marker (the truncated form of the human receptor for nerve growth factor, ΔNGFR). We performed therefore a further myeloma purging step by selecting the transduced cells at the end of the culture.</p> <p>Results</p> <p>Overall recovery of CD34<sup>+ </sup>cells after culture was 128.5%; ΔNGFR transduction rate was 28.8% for CD34<sup>+ </sup>cells and 0% for CD138-selected primary myeloma cells, respectively. Recovery of CD34<sup>+ </sup>cells after ΔNGFR selection was 22.3%. By patient-specific Ig-gene rearrangements, we assessed a decrease of 0.7–1.4 logs in tumor load after the CD34<sup>+ </sup>cell selection, and up to 2.3 logs after culture and ΔNGFR selection.</p> <p>Conclusion</p> <p>We conclude that <it>ex-vivo </it>culture and retroviral-mediated transduction of myeloma leukaphereses provide an efficient tumor cell purging.</p
    corecore