2,226 research outputs found

    Altered brain connectivity in sudden unexpected death in epilepsy (SUDEP) revealed using resting-state fMRI

    Get PDF
    The circumstances surrounding SUDEP suggest autonomic or respiratory collapse, implying central failure of regulation or recovery. Characterisation of the communication among brain areas mediating such processes may shed light on mechanisms and noninvasively indicate risk. We used rs-fMRI to examine network properties among brain structures in people with epilepsy who suffered SUDEP (n = 8) over an 8-year follow-up period, compared with matched high- and low-risk subjects (n = 16/group) who did not suffer SUDEP during that period, and a group of healthy controls (n = 16). Network analysis was employed to explore connectivity within a ‘regulatory-subnetwork’ of brain regions involved in autonomic and respiratory regulation, and over the whole-brain. Modularity, the extent of network organization into separate modules, was significantly reduced in the regulatory-subnetwork, and the whole-brain, in SUDEP and high-risk. Increased participation, a local measure of inter-modular belonging, was evident in SUDEP and high-risk groups, particularly among thalamic structures. The medial prefrontal thalamus was increased in SUDEP compared with all other control groups, including high-risk. Patterns of hub topology were similar in SUDEP and high-risk, but were more extensive in low-risk patients, who displayed greater hub prevalence and a radical reorganization of hubs in the subnetwork. SUDEP is associated with reduced functional organization among cortical and sub-cortical brain regions mediating autonomic and respiratory regulation. Living high-risk subjects demonstrated similar patterns, suggesting such network measures may provide prospective risk-indicating value, though a crucial difference between SUDEP and high-risk was altered connectivity of the medial thalamus in SUDEP, which was also elevated compared with all sub-groups. Disturbed thalamic connectivity may reflect a potential non-invasive marker of elevated SUDEP risk

    Estimating blood pressure trends and the nocturnal dip from photoplethysmography

    Get PDF
    Objective: Evaluate a method for the estimation of the nocturnal systolic blood pressure dip from 24-hour blood pressure trends using a wrist-worn Photoplethysmography (PPG) sensor and a deep neural network in free-living individuals, comparing the deep neural network to traditional machine learning and non-machine learning baselines. Approach: A wrist-worn PPG sensor was worn by 106 healthy individuals for 226 days during which 5111 reference values for blood pressure were obtained with a 24-hour ambulatory blood pressure monitor as ground truth and matched with the PPG sensor data. Features based on heart rate variability and pulse morphology were extracted from the PPG waveforms. Machine learning models (linear regression, random forests, dense neural networks and long- and short-term memory neural networks) were then trained and evaluated in their capability of tracking trends in systolic and diastolic blood pressure, as well as the estimation of the nocturnal systolic blood pressure dip. Main results Best performance was obtained with a deep long- and shortterm memory neural network with a Root Mean Squared Error (RMSE) of 3.12±2.20 ∆mmHg and a correlation of 0.69 (p = 3 ∗ 10−5) with the ground truth Systolic Blood Pressure (SBP) dip. This dip was derived from trend estimates of blood pressure which had an RMSE of 8.22±1.49 mmHg for systolic and 6.55±1.39 mmHg for diastolic blood pressure. The random forest model showed slightly lower average error magnitude for SBP trends (7.86±1.57 mmHg), however Bland-Altmann analysis revealed systematic problems in its predictions that were less present in the long- and short-term memory model. Significance The work provides first evidence for the unobtrusive estimation of the nocturnal blood pressure dip, a highly prognostic clinical parameter. It is also the first to evaluate unobtrusive blood pressure measurement in a large data set of unconstrained 24-hour measurements in free-living individuals and provides evidence for the utility of long- and short-term models in this domain

    Distinct Patterns of Brain Metabolism in Patients at Risk of Sudden Unexpected Death in Epilepsy

    Get PDF
    Objective: To characterize regional brain metabolic differences in patients at high risk of sudden unexpected death in epilepsy (SUDEP), using fluorine-18-fluorodeoxyglucose positron emission tomography (18FDG-PET). Methods: We studied patients with refractory focal epilepsy at high (n = 56) and low (n = 69) risk of SUDEP who underwent interictal 18FDG-PET as part of their pre-surgical evaluation. Binary SUDEP risk was ascertained by thresholding frequency of focal to bilateral tonic-clonic seizures (FBTCS). A whole brain analysis was employed to explore regional differences in interictal metabolic patterns. We contrasted these findings with regional brain metabolism more directly related to frequency of FBTCS. Results: Regions associated with cardiorespiratory and somatomotor regulation differed in interictal metabolism. In patients at relatively high risk of SUDEP, fluorodeoxyglucose (FDG) uptake was increased in the basal ganglia, ventral diencephalon, midbrain, pons, and deep cerebellar nuclei; uptake was decreased in the left planum temporale. These patterns were distinct from the effect of FBTCS frequency, where increasing frequency was associated with decreased uptake in bilateral medial superior frontal gyri, extending into the left dorsal anterior cingulate cortex. Significance: Regions critical to cardiorespiratory and somatomotor regulation and to recovery from vital challenges show altered interictal metabolic activity in patients with frequent FBTCS considered to be at relatively high-risk of SUDEP, and shed light on the processes that may predispose patients to SUDEP

    Probable tacrolimus toxicity from tibolone co-administration in a woman: a case report

    Get PDF
    Introduction: Tibolone is a synthetic steroid, used with increasing frequency to treat symptoms of menopause, including patients with solid-organ transplants who are taking concurrent immune suppression. To the best of our knowledge, there are no reported drug interactions between tibolone and tacrolimus, one of the principal immune suppressants used in kidney transplantation. Case presentation: We report the case of a 49-year-old Caucasian woman who had received a kidney transplant and who developed acute kidney injury secondary to tacrolimus toxicity 10 days after starting tibolone therapy. No alternative causes were found. Tibolone is known to be a weak competitive inhibitor of CYP3A4, which is involved in tacrolimus metabolism. Conclusions: Despite a careful evaluation, no alternative reason was found for the acute kidney injury, and her kidney function returned to the previous baseline within several days of cessation of the medication, and with no other specific treatment. Using the Drug Interaction Probability Scale we conclude that she experienced a probable drug interaction. We believe that transplant clinicians should utilise frequent therapeutic drug monitoring of tacrolimus in patients starting or stopping tibolone therapy

    HSPB1, HSPB6, HSPB7 and HSPB8 Protect against RhoA GTPase-Induced Remodeling in Tachypaced Atrial Myocytes

    Get PDF
    BACKGROUND: We previously demonstrated the small heat shock protein, HSPB1, to prevent tachycardia remodeling in in vitro and in vivo models for Atrial Fibrillation (AF). To gain insight into its mechanism of action, we examined the protective effect of all 10 members of the HSPB family on tachycardia remodeling. Furthermore, modulating effects of HSPB on RhoA GTPase activity and F-actin stress fiber formation were examined, as this pathway was found of prime importance in tachycardia remodeling events and the initiation of AF. METHODS AND RESULTS: Tachypacing (4 Hz) of HL-1 atrial myocytes significantly and progressively reduced the amplitude of Ca²⁺ transients (CaT). In addition to HSPB1, also overexpression of HSPB6, HSPB7 and HSPB8 protected against tachypacing-induced CaT reduction. The protective effect was independent of HSPB1. Moreover, tachypacing induced RhoA GTPase activity and caused F-actin stress fiber formation. The ROCK inhibitor Y27632 significantly prevented tachypacing-induced F-actin formation and CaT reductions, showing that RhoA activation is required for remodeling. Although all protective HSPB members prevented the formation of F-actin stress fibers, their mode of action differs. Whilst HSPB1, HSPB6 and HSPB7 acted via direct prevention of F-actin formation, HSPB8-protection was mediated via inhibition of RhoA GTPase activity. CONCLUSION: Overexpression of HSPB1, as well as HSPB6, HSPB7 and HSPB8 independently protect against tachycardia remodeling by attenuation of the RhoA GTPase pathway at different levels. The cardioprotective role for multiple HSPB members indicate a possible therapeutic benefit of compounds able to boost the expression of single or multiple members of the HSPB family

    Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene

    Full text link
    An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale 3D printing, catalysis, and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete angstrom-sized pores in monolayer graphene can be detected and then controlled using nanometer-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog

    Proactive and politically skilled professionals: What is the relationship with affective occupational commitment?

    Get PDF
    The aim of this study is to extend research on employee affective commitment in three ways: (1) instead of organizational commitment the focus is on occupational commitment; (2) the role of proactive personality on affective occupational commitment is examined; and (3) occupational satisfaction is examined as a mediator and political skills as moderator in the relationship between proactive personality and affective occupational commitment. Two connected studies, one in a hospital located in the private sector and one in a university located in the public sector, are carried out in Pakistan, drawing on a total sample of over 400 employees. The results show that proactive personality is positively related to affective occupational commitment, and that occupational satisfaction partly mediates the relationship between proactive personality and affective occupational commitment. No effect is found for a moderator effect of political skills in the relationship between proactive personality and affective occupational commitment. Political skills however moderate the relationship between proactive personality and affective organizational commitment
    corecore