36 research outputs found

    Sheldon-Hall syndrome

    Get PDF
    Sheldon-Hall syndrome (SHS) is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome). Prenatal diagnosis by ultrasonography is feasible at 18–24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal

    Noncompaction of the Ventricular Myocardium Is Associated with a De Novo Mutation in the β-Myosin Heavy Chain Gene

    Get PDF
    Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the α- and β-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium

    Genomic sequencing in clinical trials

    Get PDF
    Human genome sequencing is the process by which the exact order of nucleic acid base pairs in the 24 human chromosomes is determined. Since the completion of the Human Genome Project in 2003, genomic sequencing is rapidly becoming a major part of our translational research efforts to understand and improve human health and disease. This article reviews the current and future directions of clinical research with respect to genomic sequencing, a technology that is just beginning to find its way into clinical trials both nationally and worldwide. We highlight the currently available types of genomic sequencing platforms, outline the advantages and disadvantages of each, and compare first- and next-generation techniques with respect to capabilities, quality, and cost. We describe the current geographical distributions and types of disease conditions in which these technologies are used, and how next-generation sequencing is strategically being incorporated into new and existing studies. Lastly, recent major breakthroughs and the ongoing challenges of using genomic sequencing in clinical research are discussed

    Heavy and light roles: myosin in the morphogenesis of the heart

    Get PDF
    Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies suggest that both myosin heavy-chain and myosin lightchain proteins are required for a correctly formed heart. Myosins are structural proteins that are not only expressed from early stages of heart development, but when mutated in humans they may give rise to congenital heart defects. This review will discuss the roles of myosin, specifically with regards to the developing heart. The expression of each myosin protein will be described, and the effects that altering expression has on the heart in embryogenesis in different animal models will be discussed. The human molecular genetics of the myosins will also be reviewed

    Freeman–Sheldon Syndrome

    No full text
    corecore