15 research outputs found

    A Cellular Pathway Involved in Clara Cell to Alveolar Type II Cell Differentiation after Severe Lung Injury

    Get PDF
    Regeneration of alveolar epithelia following severe pulmonary damage is critical for lung function. We and others have previously shown that Scgb1a1-expressing cells, most likely Clara cells, can give rise to newly generated alveolar type 2 cells (AT2s) in response to severe lung damage induced by either influenza virus infection or bleomycin treatment. In this study, we have investigated cellular pathway underlying the Clara cell to AT2 differentiation. We show that the initial intermediates are bronchiolar epithelial cells that exhibit Clara cell morphology and express Clara cell marker, Scgb1a1, as well as the AT2 cell marker, pro-surfactant protein C (pro-SPC). These cells, referred to as pro-SPC[superscript +] bronchiolar epithelial cells (or SBECs), gradually lose Scgb1a1 expression and give rise to pro-SPC[superscript +] cells in the ring structures in the damaged parenchyma, which appear to differentiate into AT2s via a process sharing some features with that observed during alveolar epithelial development in the embryonic lung. These findings suggest that SBECs are intermediates of Clara cell to AT2 differentiation during the repair of alveolar epithelia following severe pulmonary injury.Singapore-MIT Alliance for Research and Technology Center. Infectious Disease Research Grou

    Molecular profiling of single Sca-1+/CD34+,- cells - the putative murine lung stem cells

    Get PDF
    Murine bronchioalveolar stem cells play a key role in pulmonary epithelial maintenance and repair but their molecular profile is poorly described so far. In this study, we used antibodies directed against Sca-1 and CD34, two markers originally ascribed to pulmonary cells harboring regenerative potential, to isolate single putative stem cells from murine lung tissue. The mean detection rate of positive cells was 8 per 106 lung cells. We then isolated and globally amplified the mRNA of positive cells to analyze gene expression in single cells. The resulting amplicons were then used for molecular profiling by transcript specific polymerase chain reaction (PCR) and global gene expression analysis using microarrays. Single marker-positive cells displayed a striking heterogeneity for the expression of epithelial and mesenchymal transcripts on the single cell level. Nevertheless, they could be subdivided into two cell populations: Sca-1+/CD34− and Sca-1+/CD34+ cells. In these subpopulations, transcripts of the epithelial marker Epcam (CD326) were exclusively detected in Sca-1+/CD34− cells (p = 0.03), whereas mRNA of the mesenchymal marker Pdgfrα (CD140a) was detected in both subpopulations and more frequently in Sca-1+/CD34+ cells (p = 0.04). FACS analysis confirmed the existence of a Pdgfrα positive subpopulation within Epcam+/Sca-1+/CD34− epithelial cells. Gene expression analysis by microarray hybridization identified transcripts differentially expressed between the two cell types as well as between epithelial reference cells and Sca-1+/CD34+ single cells, and selected transcripts were validated by quantitative PCR. Our results suggest a more mesenchymal commitment of Sca-1+/CD34+ cells and a more epithelial commitment of Sca-1+/CD34− cells. In summary, the study shows that single cell analysis enables the identification of novel molecular markers in yet poorly characterized populations of rare cells. Our results could further improve our understanding of Sca-1+/CD34+,− cells in the biology of the murine lung
    corecore