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Abstract

Murine bronchioalveolar stem cells play a key role in pulmonary epithelial maintenance and repair but their molecular
profile is poorly described so far. In this study, we used antibodies directed against Sca-1 and CD34, two markers originally
ascribed to pulmonary cells harboring regenerative potential, to isolate single putative stem cells from murine lung tissue.
The mean detection rate of positive cells was 8 per 106 lung cells. We then isolated and globally amplified the mRNA of
positive cells to analyze gene expression in single cells. The resulting amplicons were then used for molecular profiling by
transcript specific polymerase chain reaction (PCR) and global gene expression analysis using microarrays. Single marker-
positive cells displayed a striking heterogeneity for the expression of epithelial and mesenchymal transcripts on the single
cell level. Nevertheless, they could be subdivided into two cell populations: Sca-1+/CD342 and Sca-1+/CD34+ cells. In these
subpopulations, transcripts of the epithelial marker Epcam (CD326) were exclusively detected in Sca-1+/CD342 cells
(p = 0.03), whereas mRNA of the mesenchymal marker Pdgfra (CD140a) was detected in both subpopulations and more
frequently in Sca-1+/CD34+ cells (p = 0.04). FACS analysis confirmed the existence of a Pdgfra positive subpopulation within
Epcam+/Sca-1+/CD342 epithelial cells. Gene expression analysis by microarray hybridization identified transcripts
differentially expressed between the two cell types as well as between epithelial reference cells and Sca-1+/CD34+ single
cells, and selected transcripts were validated by quantitative PCR. Our results suggest a more mesenchymal commitment of
Sca-1+/CD34+ cells and a more epithelial commitment of Sca-1+/CD342 cells. In summary, the study shows that single cell
analysis enables the identification of novel molecular markers in yet poorly characterized populations of rare cells. Our
results could further improve our understanding of Sca-1+/CD34+,2 cells in the biology of the murine lung.
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Introduction

The murine lung contains at least 40 morphologically distinct

cell types of mesodermal or endodermal origin [1]. It can be

subdivided anatomically in three different regions: large airways,

bronchioles, and alveoli. Each region is composed of different

cell types whose homeostasis is guaranteed by regionally specific

progenitor cells [2,3]. Importantly, Sca-1+ cells have been

ascribed decisive functions regarding the maintenance and

repair of the airways [2]. In injury models, Sca-1+ cells

demonstrated resistance to damage and clonal expansion

leading to a restoration of previously experimentally depleted

epithelial structures [2]. During the last years, considerable

efforts have been undertaken to further characterize a specific

subgroup of Sca-1+ cells. These cells were named bronchioal-

veolar stem cells (BASCs) based on their location at the

bronchioalveolar duct junction [4] where they proved to play a

key role in distal airway repair [4–7].

However, a more detailed characterization of this subpopula-

tion in terms of its protein expression remained challenging. Kim

and colleagues [4] identified BASCs as positive for stem cell

antigen 1 (Sca-1), surfactant protein C (Sftpc), clara cell secretory

protein (Ccsp), and cluster of differentiation 34 (CD34) as well as

negative for the platelet endothelial cell adhesion molecule (CD31,

a marker of endothelial cells), and protein tyrosine phosphatase,

receptor type C (CD45, a marker of hematopoietic cells). More

recent studies, however, confirmed Sca-1 and Sftpc but not CD34

as potential marker proteins of BASCs [8–10]. In contrast to the

original publication [4], Sca-1+/CD34+/CD452/CD312 cells

showed no enhanced proliferation rate after lung injury as it

could be demonstrated with Sca-1+/CD342/CD452/CD312 cells

[10]. Furthermore, Sca-1+/CD34+/CD452/CD312 cells co-

expressed mesenchymal markers thymus cell antigen 1 (CD90)

and platelet derived growth factor receptor a (Pdgfra, CD140a)

questioning their epithelial origin [8]. The epithelial cell adhesion

molecule (Epcam, CD326), a6-Integrin (Itga), ß4-Integrin and
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cluster of differentiation 24 (CD24) were newly introduced as

BASC-specific markers [2,9,10].

Considering the heterogeneity of Sca-1+ murine lung cells, as it

could be demonstrated for the group of BASCs, the isolation and

subsequent gene expression analysis of single cells may provide an

interesting tool for the identification of novel molecular markers in

poorly described rare cells [11,12]. Eventually, this approach

could allow better distinction between the different subtypes of

Sca-1+ cells and lead to the discovery of novel molecular markers

facilitating a better detection and functional evaluation. In this

study, we isolated viable Sca-1+ and CD34+ cells on the basis of

their protein expression. Following global amplification of single

cell mRNA, gene expression profiling was performed to analyze

the cell populations at the single cell level. The analysis included

markers that have previously been ascribed to BASCs and

intended to identify markers that thus far have not been described

in Sca-1+ murine lung cells.

Materials and Methods

Animals and Tissue Preparation
No animal underwent animal experimentation as defined by the

German law (1 7 TierschG). All animals were euthanized and

killed before organs were taken. According to German law (1

6 Abs 1 TierschG) there is no requirement for an Ethics vote nor a

notification of the local Government for dissection and organ use

after the death of an animal. Mice were kept according to the

guidelines of the Felasa (Federation for Laboratory Animal

Science Associations) and the guideline 2010/63/EU and the

ETS123 (APPENDIX A to the European Convention for the

Protection of Vertebrate Animals used for Experimental and other

Scientific Purposes).

Experiments were conducted on 26 Balb/c mice (10 female,

16 male) between 8 and 12 weeks of age. Mice were euthanized

with 100% carbon dioxide, and subsequently the thoracic cavity

was opened and the great venous vessels were clamped. The right

ventricle was incised and a knop canula introduced to perfuse the

lungs with 20–30 ml of body-warm saline. After exsanguination,

lungs were dissected and collected in Hanks Balanced Salt

Solution (HBSS, pH 7.4, Sigma Aldrich).

Tissue Digestion and Cell Separation
The lungs were finely minced and the tissue was enzymatically

digested according to an established protocol [13], with minor

modifications. Briefly, each finely minced lung preparation was

incubated with 5.4 U/ml collagenase (Roche), 0.03 U/ml dispase

(GE Healthcare-Invitrogen) and 2.5 mM CaCl2 for 45 minutes at

37uC. The suspension was then filtered through nylon membranes

(BD; 100 mm, 40 mm). Enzymes were inactivated in HBSS/0.2 M

EDTA (pH 7.4), cells were centrifuged (1500 rpm, 4uC, 5 min)

and resuspended in PBS (pH 7.4). A Percoll gradient (70%)

density centrifugation was performed (2050 rpm, 4uC, 20 min) to

separate the mononuclear cell fraction. The cell interphase was

recovered and washed in PBS. Following a centrifugation step

(1500 rpm, 4uC, 10 min) cells were resuspended in PBS (pH 7.4).

Finally, viable cells were identified by Trypan blue assay and

counted in a Neubauer chamber.

For FACS analysis, the lung preparations of 5 mice were finely

minced. The tissue was enzymatically digested with collagenase

(Sigma; 1.5 mg/ml) for 30 minutes at 37uC. The enzymes were

inactivated with PBS/BSA (Sigma; 2.5 g/100 ml). The suspension

was filtered through a cell strainer (Greiner Bio-One; 40 mm),

centrifuged (300 g, 10 min, 4uC) and resuspended in 5 ml red

blood cell lysis solution (16) (Miltenyi; order no. 130-094-183) for

15 min at room temperature. Thereafter, cells were washed with

PBS, centrifuged und resuspended in PBS to be counted in a

Neubauer chamber.

Immunofluorescence Staining and Single Cell Isolation
Immunofluorescence was performed on one million cells of each

lung preparation with antibody concentrations of 10 mg/ml for all

stainings. Cells were stained subsequently with either antibodies

specific for CD31 (Biozol, clone 390) and Sca-1 (FITC-conjugated,

Cedarlane, clone CT-6A/6E) or for CD34 (BD Pharmingen, clone

RAM34) and CD45 (FITC-conjugated, Becton Dickinson GmbH,

clone 30-F11). Cy3-conjugated secondary antibodies (Jackson

ImmunoResearch Laboratories, code number: 115-166-071) were

used to visualize CD31 or CD34 and Alexa 488-conjugated

secondary antibodies (Molecular Probes, cat # A-11096) to

visualize Sca-1 or CD45, respectively. Isotype controls were

applied for all staining procedures as negative controls. Depending

on the staining, Propidium iodide (PI, for Sca-1/CD31 staining) or

GFP-Annexine (GFP-A, for CD34/CD45 staining) served as

markers for apoptotic cells. Lung cells were screened on an 8-field

glass slide for Sca-1+ and CD34+ cells (0.256106 cells/field) using

an inverted fluorescence microscope (Zeiss, Germany) equipped

with a micromanipulator (Eppendorf, Germany). Sca-1+/

CD312/PI2 and CD34+/CD452/GFP-A2 cells were isolated

and each single cell was separately transferred into a 0.2 ml

reaction tube (1 cell/tube) containing 4 ml of lysis buffer and 0.4 ml

of tRNA.

Since quantitative gene expression analysis of the isolated Sca-

1+ and CD34+ cells was an important goal of our study, we had to

acquire appropriate reference cells for comparison, i.e. pulmonary

cells lacking Sca-1 and CD34 expression and not originating from

hematopoietic or endothelial cell lines. Therefore, cells of 6

enzymatically digested lungs were double-stained with CD31 and

CD45 antibodies in order to collect single cell samples. The same

isolation procedure as described above was applied for

CD312/CD452 reference cells. To exclude cells expressing Sca-

1 and CD34, specific PCRs on the corresponding amplified

transcripts of those genes were performed.

Whole Transcriptome Amplification (WTA) of Single Cells
The transcriptome of each obtained cell was extracted and

amplified according to an established protocol [12] with modifi-

cations [11]: One microlitre protease/lysis buffer mix (1:20-

dilution; Active Motif, Rixensart, Belgium) and 1 ml biotinylated

peptide nucleic acids (PNAs; Midi-Kit, Active Motif, dissolved in

400 ml water) were added to each tube for proteolytic digestion.

Digestion was performed at 45uC for 10 min, followed by

inactivation for 1 min at 70uC and 15 min at 22uC for PNA

annealing to the mRNA. mRNA was captured by streptavidine-

coated magnetic particles (Active Motif) during 45 min rotation at

room temperature. After addition of 10 ml wash buffer 1 (50 mM

Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM DTT and

0.25% Igepal), tubes were placed in a magnetic rack. The

supernatants containing the genomic DNA were removed and the

beads washed with 20 ml wash buffer 2 (50 mM Tris-HCl

(pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM DTT and 0.5%

Tween). The supernatants were removed and the beads washed

once again with 20 ml wash buffer 1. The mRNA was reverse

transcribed using a mix comprising 0.5 mM dNTPs, 30 mM

CFL15CN8 primer ([C]n = 15GTCTAGA[Nn = 8]), 15 mM

CFL15CT24 primer ([C]n = 15GTCTAGA[T]n = 24), 0.25% Igepal,

10 mM DTT (Invitrogen), the reaction buffer supplied by the

manufacturer and 200 U of Superscript II reverse transcriptase

(Invitrogen, Karlsruhe) in a final volume of 20 ml. Primers were
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allowed to anneal at room temperature for 10–15 min before the

enzyme was added. Reverse transcription was conducted for

45 min at 44uC in an oven with constant steering. Following

reverse transcription, the magnetic cDNA-mRNA-hybrids were

washed in 20 ml tailing wash buffer (50 mM KH2PO4 (pH 7),

1 mM DTT, 0.25% Igepal), resuspended in 10 ml tailing buffer

(10 mM KH2PO4 (pH 7), 4 mM MgCl2, 0.1 mM DTT, 200 mM

dGTP) and then coated with 40 ml PCR oil. Hybrids underwent

denaturation at 94uC for 4 min. The tailing reaction was

performed at 37uC for 60 min after addition of 10 U terminal

deoxynucleotide transferase (TdT; Amersham, Freiburg). TdT

was inactivated at 70uC for 5 min. Next, a hot-start PCR was

performed. Therefore, 35 ml of PCR mix 1 containing 4 ml buffer

1 (Expand long template, Roche) and 3% deionized formamide

was added to each sample., Next, the samples were heat up to

78uC followed by addition of 5.5 ml of the PCR mix 2 (350 mM

dNTPs, 1.2 mM CP2 primer (TCAGAATTCATG[C]n = 15) and

5 U Pol Mix (Expand long template)). Forty cycles were run in a

MJ research PCR machine: 20 cycles of 15 sec at 94uC, 30 sec at

65uC, 2 min at 68uC and 20 cycles with an elongation of the

extension time of 10 sec and a final elongation step of 7 min at

68uC.

Analytical PCR on Specific Transcripts
For quality control of whole transcriptome amplification

products, we tested for amplicons of ubiquitously expressed genes

Actb (ß-actin) and Gapdh (Glyceraldehyde 3-phosphate dehydroge-

nase) by PCR. Only cells with at least one positive result were

considered for further analysis. For initial molecular characteriza-

tion of isolated cells, PCR on transcripts of Sca-1, CD34, CD45 and

CD31 were performed.

In order to differentiate between a more epithelial or

mesenchymal phenotype of isolated cells, we conducted further

PCRs specific for epithelial markers Epcam (Epithelial cell adhesion

molecule), Itga (Integrin alpha-6) and Sftpc (Surfactant protein C)

and mesenchymal markers CD90 (Thy-1) and Pdgfra (platelet

derived growth factor receptor alpha, CD140a), as suggested by

McQualter et al. [9]. Specificity of all primers was confirmed by

restriction digestion, sequences are depicted in Table S1.

Array Hybridization and Data Analysis
Probes of the 29 selected cells were hybridized on Mouse

Genome OpArrays (Eurofins MWG Operon; cat # OPMMV4-

05). The arrays contain probes for 16,928 genes and have

previously been used for hybridization of single cell WTA products

[11]. The amplified single cell cDNA was labeled with 0.05 mM

digoxygenin-dUTP (Roche) and 0.05 mM aminodigoxygenin-

dCTP (PerkinElmer, Rodgau-Jügesheim) in the presence of 3%

formamide, 2.4 mM CP2-BGL primer (TCAGAATT-

CATGCCGCCCCCCCGGCCC) and dNTPs (0.35 mM dATP

and dGTP, 0.3 mM dTTP and dCTP). Reference cDNA was

labeled with biotin-dUTP (Roche) and biotin-dCTP (Invitrogen).

Primer sequences were then separated from the cDNA sequences

in a subsequent digestion step with 30 U of BglI (Fermentas, St.

Leon-Rot), and then purified (QIAquick PCR Purification Kit,

QIAGEN, Hilden). Test and reference cDNA were co-precipitat-

ed with 0.8 ml polyacrylamide carrier, 0.163 M sodium acetate

and 2.56 ethanol (100%). Arrays were pre-hybridized with 56
SSC +0.1% SDS +0.1% BSA at 42uC and hybridized in an

Arraybooster hybstation (Implen, Munich) at 42uC overnight. The

slides were washed twice at 42uC in 26SSC+0.1% SDS for 5 min,

twice at room temperature in 0.16 SSC +0.1% SDS for 10 min,

and finally twice at room temperature in 0.16SSC for 2 min 30 s.

Unspecific binding of labeled proteins was blocked with 1%

blocking reagent for nucleic acid hybridization (Roche). Slides

were then stained with 16 mg/ml anti-Dig-Cy5 (Jackson Labora-

tories) and 18 mg/ml Streptavidin-Cy3 (Jackson Laboratories). In

order to remove excess antibody/streptavidin, slides were washed

with 46 SSC +0.2% Tween-20.

The microarray slides were scanned using the GenePix 4000A

Arrayscanner (Molecular Device). The downstream data prepro-

cessing and analysis was done in R using the limma package [14].

Raw probe intensities were background corrected by applying the

‘normexpr’ method. Analysis was restricted to Cy5 intensities.

Loess normalization was used in M versus A plots of individual

Cy5 intensities of a given transcript in a given array and the

median Cy5 intensity across all arrays of the same transcript. Log2

ratios were calculated from the normalized intensities and

quantile-normalization was subsequently applied across all arrays.

All further analysis was based on normalized log ratios. Based on

the hybridization date the data set is separated into two main

batches of microarrays (early 2007/2008 and late 2009), which

degrade further into small sub-batches. We used the ComBat

algorithm [15] to adjust for the main batches. Transcripts

differentially expressed between the groups were identified using

regularized linear model as implemented in the limma package

[16]. Transcripts were considered as significantly differentially

expressed when their corresponding adjusted P-value was #0.05.

Adjustment of P-values as correction for multiple testing was done

as proposed by Benjamini et al. [17]. The differential gene

expression analysis was used to generate candidates of regulated

genes. The data have been deposited in NCBIs Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and as-

signed series accession number GSE52215.

Quantitative PCR
The differentially expressed genes for Decorin (Dcn), Gelsolin

(Gsn) and Esterase D/formylglutathion hydrolase (Esd) were used

to validate microarray results in an additional series of specific

analytical and quantitative PCRs (qPCR). qPCR was performed

using the LightCyclerH 480 instrument (Roche, Mannheim,

Germany). The real-time quantification was conducted using

LightCyclerH 480 SYBR Green I Master reagent (Roche,

Mannheim, Germany). The cycling procedure consisted of an

initial denaturation step (5 min at 95uC) followed by 38 cycles of

20 s at 95uC, 15 s at 58uC and 15 s at 72uC. All reactions were

run in three replicas in a final volume of 19 ml containing 5 ml of

cDNA template and 7 pmol of each forward and reverse primer.

Positive and negative controls were included in all qPCR runs.

Additionally, to confirm the specificity of reaction, all experiments

included melt curve analysis. For each cell group three represen-

tative samples were generated by pooling equal amounts of single-

cell cDNA samples assigned to a given group (10, 7 or 12 samples

for Sca-1+/CD34+, Sca-1+/CD342 and reference cells, respectively).

This was done to decrease the measurement noise originating from

cell-to-cell variability of gene expression levels. 1006 dilutions of

the original cDNA sample representations were used as template

for the qPCR. The relative gene expression levels were calculated

using the efficiency corrected mathematical model described

elsewhere [18]. Quantification was performed in parallel using

three different reference genes Actb, Gapdh and Hprt1 (Hypoxan-

thine phosphoribosyl transferase 1), in each case giving highly

comparable results. Group-wise comparison of relative gene

expression levels was performed using 2-tailed Student’s t-test. A

value of p,0.05 was considered to indicate a statistically

significant difference.

Single Cell Profiling of Lung Stem Cells
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FACS Staining
For FACS analysis a FACSCanto II (BD Biosciences) was used.

Five million cells per animal were blocked with 1 mg Fc-block/

tube and stained with anti-mouse CD31 antibody (PE-conjugated,

clone 390; Biolegend, 1 mg/ml), anti-mouse CD34 antibody

(FITC-conjugated, clone RAM34; eBioscience, 10 mg/ml), anti-

mouse CD45 antibody (PerCP/Cy5.5-conjugated, clone 30-F11;

Biolegend, 2.5 mg/ml), anti-mouse Sca-1 antibody (APC-Cy7-

conjugated, clone D7; Biolegend, 2.5 mg/ml), anti-mouse EpCAM

antibody (eF450-conjugated, clone G8.8; eBioscience, 10 mg/ml)

and anti-mouse PDGFRa antibody (APC-conjugated, clone

APA5; Biolegend, 10 mg/ml) or corresponding isotype antibodies

for 20 min at 4uC. Results were visualized by the FlowJo package

(Tree Star Inc., Ashland, OR, USA).

Results

Identification of Sca-1+ and CD34+ Cells and Selection for
Molecular Analysis

In order to isolate Sca-1+ and CD34+ cells 15 Balb/c mice

between 8 and 12 weeks of age were sacrificed. Tissue digestion

and cell separation started immediately after lung explantation.

The number of obtained non-erythrocytic, non-apoptotic cells per

experiment ranged from 0.406106 to 5.06106 (mean 1.66106;

standard error of the mean (SEM) 1.166106). The number of

erythrocytes ranged from 0.206106 to 2.66106 (mean 0.876106;

SEM 0.736106), the number of apoptotic cells (i.e. PI+ or GFP-A+

cells) ranged from 0.926106 to 4.06106 (mean 1.96106; SEM

1.36106). The experimental setup is outlined in Figure 1.

Up to one million cells per animal were screened, equally

divided for Sca-1/CD31 and CD34/CD45 immunofluorescence

(i.e. up to 0.506106 cells for each staining and animal). We

identified and isolated 68 Sca-1+/CD312/PI2 cells, the number of

obtained cells per mouse ranging from 0 to 10 (mean 4.5, SEM

3.0, Table 1 and Figure S1). Additionally, we detected 58 CD34+/

CD452/GFP-A2 cells, ranging from 0 to 13 in individual mice

(mean 3.9; SEM 4.6, Table 1 and Figure S1). All detected cells

were isolated and subjected to single cell gene expression analysis

following whole transcriptome amplification (WTA). The enzy-

matically digested lungs of 6 additional mice yielding up to

1.76106 non-erythrocytic cells (mean 1.36106 cells; SEM

0.326106 cells) were stained with antibodies against CD31 and

CD45 resulting in the isolation of 35 control cells

(CD312/CD452). All isolated cells were subjected to whole

transcriptome amplification (WTA) and WTA quality controlled

by expression of Actb and Gapdh. In total, 115/161 (71.4%) samples

passed our quality assay and were subjected to further molecular

analysis (no difference between cell types, data not shown).

We continued by testing for the presence of transcripts of the

proteins targeted by antibodies in immunofluorescence: Sca-1,

CD34, CD45 and CD31. Within the two populations of putative

BASC, 35 cells completely lacked transcript expression of Sca-1/

CD34, while another 10 cells co-expressed CD31 and/or CD45

(Table 2). We decided to exclude those cells from further analyses

which resulted in a cohort of 46 single putative BASCs remaining

Figure 1. Flowchart of the experimental setup. Simplified schematic overview on the workflow of single cell isolation and immunofluorescent
staining strategy: Cells are divided into two groups after separation and stained with antibodies directed against CD31 and Sca-1 or CD34 and CD45,
respectively. In order to gain appropriate reference cells for comparative gene expression analysis, additional lung cells are stained with antibodies
directed against CD31 and CD45, and only CD312/CD452 cells are isolated. Propidium iodide (PI) and GFP-Annexine (GFP-A) are applied to exclude
apoptotic cells. Genes recently introduced in literature in order to differentiate between epithelial and mesenchymal cells are tested by specific PCR.
PCR results enable further subdivision of analyzed cells (Sca-1+/CD34+ cells, Sca-1+/CD342 cells, Sca-12/CD34+ cells). In a final step, selected Sca-1+/
CD34+ cells, Sca-1+/CD342 cells and Sca-12/CD342 reference cells are subjected to comparative gene expression analysis. Results are validated by
qPCR of pooled samples.
doi:10.1371/journal.pone.0083917.g001
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for downstream analyses. Likewise, among the tested pulmonary

reference cells we excluded one sample expressing Sca-1 and two

samples positively tested for the presence of CD45 transcripts

resulting in a cohort of 21 cDNA libraries of Sca-12/CD342 cells.

Correlation between Protein and mRNA Expression in
Single Cells

Next, we assessed the correlation between protein staining and

PCR results for Sca-1 and CD34 in the group of putative BASCs

(Table 3). In total, 24/46 cells were isolated as Sca-1+/

CD312/PI2 and 22/46 cells as CD34+/CD452/GFP-A2 using

immunofluorescent staining (Figure 1). Direct comparison re-

vealed that Sca-1 expression could be detected simultaneously at

both protein and mRNA level in 19 of 24 Sca-1+/CD312/PI2

cells (79.2%) and CD34 expression could be detected on protein

and mRNA level in 15 of 22 CD34+/CD452/GFP-A2 cells

(68.2%), thus showing a positive correlation between protein and

transcript level in the majority of putative BASCs. According to

the detected mRNA transcripts after single cell WTA, cells could

be grouped either as Sca-1+/CD34+ (n = 17), Sca-1+/CD342

(n = 22) or Sca-12/CD34+ (n = 7).

Interestingly, simultaneous expression of Sca-1 and CD34 could

be detected in 13/22 single cells isolated after CD34-staining

(59.1%) and only in 4/24 (16.7%) single cells isolated after Sca-1-

staining, resulting in a significantly higher prevalence of cells

showing mRNA transcripts of both markers Sca-1 and CD34 in

the group of CD34+/CD452/GFP-A2 cells (Fisher’s exact test,

p = 0.005, Table 3). On the other hand, the group of Sca-1+/

CD312/PI2 cells showed a higher prevalence for cells positive for

Sca-1 transcripts only, an expression pattern that matched 15/

24 Sca-1+/CD312/PI2 cells and 7/22 and CD34+/CD452/GFP-

A2 cells, respectively (Chi Square test, p = 0.04, Table 3). These

results indicate the existence of different subpopulations within the

isolated fractions of cells.

Identification of Novel Molecular Markers in Putative
BASCs

To further analyze the isolated cells, we selected 17 putative

BASCs (10 Sca-1+/CD34+ cells and 7 Sca-1+/CD342 cells) and 12

reference cells (Sca-12/CD342/CD312/CD452) for hybridization

on Mouse Genome OpArrays (Eurofins MWG Operon). Here, we

decided to compare microarray data of two of the three cell groups

independently with each other.

First, we analysed data of Sca-1+/CD34+ cells and the selected

pulmonary reference cells only, which resulted in detection of

significant changes in expression levels of 107 genes (adjusted p-

value ,0.05 each, Figure 2A, Table S2). Interestingly, we could

not find any differentially expressed genes between the groups of

Sca-1+/CD342 cells and the reference cells (Sca-12/CD342). In

turn, comparative gene expression analysis of Sca-1+/CD34+ and

Sca-1+/CD342 cells identified 8 differentially expressed genes

(adjusted p-value ,0.05 each, Table S3).

In general, gene expression in single cells is subjected to

stochastic fluctuations [19]. While in high-dimensional data (as

microarrays) normalization generally uses many if not all probes,

relative quantification in quantitative PCR (qPCR) experiments

relies on stable expression levels of individual genes. This

especially holds true for some house-keeping genes, as e.g. Actb

or Gapdh, which renders reliable relative quantification using such

an approach at the single cell level questionable [20,21]. Although

specific genes can be expressed at a stable level between individual

single cells of a certain cell type, this approach is not feasible for

Table 1. Non-erythrocytic cells, Sca-1+ and CD34+ cells per
lung preparation.

Mice
non-erythrocytic
cells

Sca-1+/CD312

cells
CD34+/CD452

cells

1 680000 3 0

2 1.526106 4 3

3 920000 4 2

4 1.26106 4 5

5 1.26106 0 0

6 2.46106 5 6

7 2.06106 5 11

8 1.26106 6 12

9 2.46106 3 3

10 400000 3 1

11 520000 3 0

12 1.26106 8 2

13 1.06106 0 13

14 5.06106 10 0

15 2.56106 10 0

doi:10.1371/journal.pone.0083917.t001

Table 2. PCR results of corresponding transcripts in Sca-1+/
CD31- and cells CD34+/CD45- cells.

PCR result Immunofluorescence

Sca-1 CD31 CD34 CD45 Sca-1+/CD312/PI2 CD34+/CD452/GFP-A2

N N

+ – – – 15 7

+ - + – 4 13

- - + – 5 2

+ - + + 2 1

+ – – + 3 0

– – + + 2 1

– – – + 12 10

– + – – 1 0

– – – – 7 3

+ + – + 0 1

– + – + 0 2

doi:10.1371/journal.pone.0083917.t002

Table 3. Distribution of PCR-based Sca-1/CD34 expression in
isolated putative BASCs.

Immunofluorescence

Sca-1+ CD34+

mRNA transcripts Sca-1+/CD34+ 4 13 17

Sca-1+/CD342 15 7 22

Sca-12/CD34+ 5 2 7

24 22 46

doi:10.1371/journal.pone.0083917.t003
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Figure 2. Gene expression microarray analysis of isolated single cells. Panel A: The comparison of microarray expression profiles of Sca-1+/
CD34+ cells and pulmonary reference (Sca-12/CD342/CD312/CD452) cells showed 107 differentially expressed genes. Panel B: Pools of analyzed cells
from Sca-1+/CD34+ subpopulation (red), Sca-1+/CD342 subpopulation (blue) and pulmonary reference cells (green) were analyzed by quantitative PCR
against differentially expressed genes Dcn, Esd and Gsn. The selected genes not only show significant differences regarding to their expression, but
also represent different subpopulations of proteins. Error bars indicate standard deviation of the mean calculated for analyzed triplicates. Expression
values are calculated by relative quantification against housekeeping gene Actb and illustrated in comparison to pulmonary reference cells
(expression value = 1.0) on a logarithmic scale. All comparisons between different groups, as determined by quantitative PCR, showed significantly
different expression levels (student’s t-test, * indicating p,0.05).
doi:10.1371/journal.pone.0083917.g002
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poorly described cell populations. Therefore, we decided to pool

the single cell samples of a pre-defined subgroup for qPCR

analyses to validate the results of the microarray analyses.

For validation, we chose transcripts for Decorin (Dcn), and

Gelsolin (Gsn), which were differentially expressed between Sca-1+/

CD34+ and reference cells, as well as Esterase D/formylglutathion

hydrolase (Esd), which was in addition differentially expressed

between Sca-1+/CD34+ and Sca-1+/CD342 cells. Besides the

differential expression, the rationale for the selection of the three

chosen transcripts was that they represent different functional

groups of genes. As expected, cells from the Sca-1+/CD34+

subpopulation expressed very high levels of all three transcripts

in comparison to cells of the other two groups (student’s t-test,

p,0.05). If comparing Sca-1+/CD342 cells with pulmonary

reference samples, Dcn and Gsn were expressed in significantly

higher levels in Sca-1+/CD342 cells than Sca-12/CD342 cells,

while Esd was expressed at significantly lower level in Sca-1+/

CD342 cells than in pulmonary reference cells as determined by

quantitative PCR (student’s t-test, p,0.05, Figure 2B).

Single Cell Analysis of Epithelial and Mesenchymal
Transcripts Allows Further Delineation of Sca-1+/CD34+,2

Subpopulations
To further clarify the epithelial or mesenchymal commitment of

isolated cells, we checked expression of mesenchymal (CD90,

Pdgfra) and epithelial transcripts (Epcam, Itga and Sftpc) as recently

described [8]. For this purpose, we analyzed all 46 putative BASCs

and 21 pulmonary reference cells by analytical PCR (Table S4).

While statistical analysis revealed no differences in the

expression frequency of mesenchymal markers in the group of

putative BASCs compared to reference cells, significant differences

were detected between Sca-1+/CD342 cells (n = 22) and Sca-1+/

CD34+ cells (n = 17, Figure 3A). Here, we noted that the epithelial

transcript Epcam was exclusively expressed in some Sca-1+/CD342

cells (6/22 cells; p = 0.03, Fisher’s exact test). In comparison, the

mesenchymal transcript Pdgfra was more frequently expressed by

Sca-1+/CD34+ cells (9/17 cells), although 4/22 Sca-1+/CD342 cells

also expressed transcripts of the gene (p = 0.04, Fisher’s exact test).

Interestingly, while the putative epithelial marker Sftpc was

frequently expressed in both major cell types, it could be detected

more frequently in Sca-1+/CD34+ than Sca-1+/CD342 cells (11/

17 vs. 7/22 single cells; p = 0.04, Chi-square test). Itga and CD90

were rarely expressed in single cells of either cell type. Within the

small group of Sca-12/CD34+ cells, 2/7 cells co-expressed

epithelial and mesenchymal markers, whereas another 2/7 cells

expressed mesenchymal markers only (Table S4). The remaining

three cells were negative for both mesenchymal and epithelial

markers.

In order to confirm the PCR results we performed FACS

analysis of 5 additional digested lung explants using antibodies

directed against Sca-1, CD34, CD45, CD31, Epcam and Pdgfra.

Within the population of CD452/CD312 cells, we could detect

3.61% of Sca-1+/CD342 cells and 14.3% of Sca-1+/CD34+ cells

in mean (Figure 3B). We proceeded to look at Epcam and Pdgfra
expression in these two subpopulations of putative BASCs. As

previously described, the majority of Sca-1+/CD342 cells

expressed Epcam, while Pdgfra was expressed in the Sca-1+/

CD34+ subpopulation. However, in good correlation to our PCR

results, we found a significant subpopulation of Epcam+/Pdgfra+

cells within the subpopulation of Sca-1+/CD342 cells (Figure 3B

and C).

Discussion

In this study we investigated the gene expression profile of single

Sca-1+/CD312/PI2 and CD34+/CD452/GFP-A2 cells that were

detected by immunofluorescence and subsequently sub-divided

into groups based on the protein expression of Sca-1 and CD34, as

well as mRNA expression of subgroup-specific markers.

Sca-1 and CD34 have both been ascribed to bronchioalveolar

stem cells (BASCs), a rare population of long-living, regional fixed,

robust cells residing at the bronchioalveolar duct junction that

have been sparsely investigated so far. Only few markers were

established in previous studies mainly applying FACS analysis,

which enables a rapid screening of very large cell numbers and

subsequent comparison between cell populations as defined by

applied protein markers. This approach shows high sensitivity and

at the same time an elevated risk to isolate false-positive cells,

which may impair the detection of extremely rare cells [22]. In this

study, we intentionally utilized a microscope-based approach to

isolate single cells to analyze cell-to-cell heterogeneity in poorly

characterized cells. Considering the low incidence of putative

BASCs in lung tissue, we believe that this approach is the method

of choice for the molecular analysis of such extremely rare and

poorly characterized cells. Beyond that, our workflow additionally

allows direct assessment of morphology and viability of the target

cells, thereby reducing the risk of contamination with false-positive

cells or cell debris to an absolute minimum.

Combined protein and cDNA analysis of Sca-1 and CD34 in

our study showed a highly positive correlation between staining

and transcript detection (79.2% for Sca-1 and 68.2% for CD34,

respectively). In addition, our approach enabled further classifica-

tion in different subpopulations characterized by Sca-1 and CD34

transcript expression. Analyzed cells consisted of two larger groups

of Sca-1+/CD342 (n = 22) and Sca-1+/CD34+ (n = 17) cells and a

smaller group of Sca-12/CD34+ (n = 7) cells.

To further investigate the expression profiles of the different cell

types, we performed microarray-based gene expression analysis of

single cell WTA products, including 10 Sca-1+/CD34+ cells, 7 Sca-

1+/CD342 cells, and 12 Sca-12/CD342 pulmonary reference cells.

Comparisons between the different subgroups revealed 107 genes

differentially expressed in Sca-1+/CD34+ cells when compared to

the reference cells, whereas no differentially expressed genes could

be detected by comparing Sca-1+/CD342 cells with reference cells.

The comparison between the two Sca-1+ cell subgroups (Sca-1+/

CD34+ vs. Sca-1+/CD342) yielded 8 differentially expressed genes.

Validation by quantitative PCRs for the genes Dcn, Gsn and Esd

confirmed the microarray results.

During the validation of the microarray results we intentionally

abstained from performing qPCR analysis directly on single cell

WTA products due to stochastic variation in expression level, a

phenomenon that has been repeatedly reported before [19,23–25].

Cell-to-cell heterogeneity in gene expression, which is also

detectable in our data sets, may represent stochastic transcriptional

bursts that are generated by intrinsic on-off transitions of the

corresponding genes occurring at irregular intervals [23,25].

Fluctuations in levels of individual transcripts also affect the

housekeeping genes, whose expression serves as reference in qPCR

analyses [20,21]. Stable reference is indispensable to reliably

quantify relative expression levels of genes of interest. Higher

stability in gene expression levels facilitating more reliable

downstream analysis can be achieved only by pooling single cell

samples representing the same cell population, thereby averaging

the stochastic variability of transcript levels in individual cells

especially for reference genes.
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Figure 3. Expression of epithelial and mesenchymal markers in Sca-1+/CD34+,2 cells. Panel A: The expression of epithelial and
mesenchymal transcripts was tested by analytical PCR and is illustrated in a hierarchical cluster heatmap. The analysis shows that the majority of Sca-
1+/CD34+ cells (light grey) show similar marker expression as Sca-12/CD34+ cells (white), while all Sca-1+/CD342 cells (dark grey) are located in the
second branch. Red squares indicate specific bands in analytical PCR, black squares indicate negative PCR results. Panel B: FACS analysis reveals
EpCAM+/Pdgfra+ subpopulation within Sca-1+/CD342/CD312/CD452 cells. For each of 5 mice, 56106 murine lung cells were isolated from lung
explants and stained with antibodies directed against Sca-1, CD34, CD31, CD45, Pdgfra and Epcam. While Sca-1+/CD342 cells consistently showed
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We selected three genes from the list of differentially expressed

genes for qPCR validation coding for proteins of different

functional groups (Dcn, Gsn, and Esd), representing extracellular

matrix components, intracellular/membrane-bound proteins and

cytoplasmic metabolic proteins, respectively. Antiproliferative or

tissue stabilizing effects as well as the promotion of cellular motility

and invasion have been demonstrated for Gelsolin and Decorin

[26–31]. Both markers have been previously assigned to pulmo-

nary fibroblasts. Consequently, their enhanced expression in Sca-

1+/CD34+ cells would be in line with mesenchymal commitment.

On the other hand, an exclusive expression of the novel markers in

mesenchymal cells has not been proven so far. Esd has been

ascribed an important role in intracellular detoxification [32]

making tumor cells more resistant against harmful substances [33].

We then searched for transcripts of recently described epithelial

(Epcam, Itga, Sftpc) and mesenchymal (CD90, Pdgfra) markers [8] by

analytical PCRs and found a frequent expression of Pdgfra in Sca-

1+/CD34+ single cells. Interestingly, almost 80% of these cells

additionally showed expression of Sftpc, described as an epithelial

marker, while only 14% of Sftpc-expressing Sca-1+/CD342 cells

showed coexpression of Pdgfra. Moreover, expression of the

epithelial transcript Epcam was restricted to the group of Sca-1+/

CD342 cells (and one Sca-12/CD34+ cells), while expression of the

mesenchymal marker Pdgfra could be detected in only four of the

analyzed Sca-1+/CD342 cells. In FACS analysis, we could confirm

a significant subpopulation of Epcam+/Pdgfra+ cells within the

Sca-1+/CD342/CD452/CD31- cells (Figure 3).

Our results support an epithelial commitment of Sca-1+/CD342

cells – in contrast to the Sca-1+/CD34+ cells that displayed an

increased incidence of mesenchymal marker expression. However,

taking into account the novel subpopulation of Sca-1+/

CD342/EpCAM+/Pdgfra+ cells we postulate that single cell

isolation and transcription profiling on rare cells represents a

sensitive approach to obtain molecular data of single cells of

interest. In this study, we showed on single murine lung cells that

this approach has the power to deliver novel molecular markers

that could contribute to a better understanding of the cellular

heterogeneity and hierarchy in the murine lung. The presented

approach may, therefore, help to analyze extremely rare and yet

poorly characterized cells (e.g. stem cells) in other fields of biology

as well.

Supporting Information

Figure S1 Immunofluorescence stained single cell sus-
pensions of explanted lungs. Panels A–D: The arrow points

to a single CD34+/CD452/GFP-Annexin2 cell (Cy3-signal)

surrounded by several CD34-negative cells showing fluorescence

in FITC channel. Panels E–F: Single Sca-1+/CD312/PI2 cell.

(TIF)

Table S1 Primer sequences.

(DOC)

Table S2 Differentially expressed genes (Sca1+/CD34+
vs Reference cells).

(DOC)

Table S3 Differentially expressed genes (Sca1+/CD34+
vs Sca1+/CD34–).

(DOC)

Table S4 Detected mRNA transcripts in isolated single
cells.

(DOC)

Acknowledgments

We thank Isabell Blochberger and Siegfried Rein for excellent technical

assistance

Author Contributions

Conceived and designed the experiments: MH CAK BP. Performed the

experiments: MH ZTC YH CB SK. Analyzed the data: MM CAK BP.

Wrote the paper: MH BP.

References

1. Fine A (2009) Breathing life into the lung stem cell field. Cell Stem Cell 4: 468–

469.

2. Chen H, Matsumoto K, Brockway BL, Rackley CR, Liang J, et al. (2012)

Airway epithelial progenitors are region specific and show differential responses

to bleomycin-induced lung injury. Stem Cells 30: 1948–1960.

3. Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, et al. (2009) The role of

Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway,

but not alveolar, epithelium. Cell Stem Cell 4: 525–534.

4. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, et al. (2005)

Identification of bronchioalveolar stem cells in normal lung and lung cancer.

Cell 121: 823–835.

5. Nolen-Walston RD, Kim CF, Mazan MR, Ingenito EP, Gruntman AM, et al.

(2008) Cellular kinetics and modeling of bronchioalveolar stem cell response

during lung regeneration. Am J Physiol Lung Cell Mol Physiol 294: L1158–

1165.

6. Qian S, Ding JY, Xie R, An JH, Ao XJ, et al. (2008) MicroRNA expression

profile of bronchioalveolar stem cells from mouse lung. Biochem Biophys Res

Commun 377: 668–673.

7. Tiozzo C, De Langhe S, Yu M, Londhe VA, Carraro G, et al. (2009) Deletion of

Pten expands lung epithelial progenitor pools and confers resistance to airway

injury. Am J Respir Crit Care Med 180: 701–712.

8. McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, et al. (2009)

Endogenous fibroblastic progenitor cells in the adult mouse lung are highly

enriched in the sca-1 positive cell fraction. Stem Cells 27: 623–633.

9. McQualter JL, Yuen K, Williams B, Bertoncello I (2010) Evidence of an

epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl

Acad Sci U S A 107: 1414–1419.

10. Teisanu RM, Lagasse E, Whitesides JF, Stripp BR (2009) Prospective isolation of

bronchiolar stem cells based upon immunophenotypic and autofluorescence

characteristics. Stem Cells 27: 612–622.

11. Hartmann CH, Klein CA (2006) Gene expression profiling of single cells on

large-scale oligonucleotide arrays. Nucleic Acids Res 34: e143.

12. Klein CA, Seidl S, Petat-Dutter K, Offner S, Geigl JB, et al. (2002) Combined

transcriptome and genome analysis of single micrometastatic cells. Nat

Biotechnol 20: 387–392.

13. Summer R, Kotton DN, Sun X, Ma B, Fitzsimmons K, et al. (2003) Side

population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol

Physiol 285: L97–104.

14. Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods

31: 265–273.

15. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray

expression data using empirical Bayes methods. Biostatistics 8: 118–127.

16. Smyth GK (2004) Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:

Article3.

17. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false

discovery rate in behavior genetics research. Behav Brain Res 125: 279–284.

18. Pfaffl MW (2001) A new mathematical model for relative quantification in real-

time RT-PCR. Nucleic Acids Res 29: e45.

Epcam expression, Pdgfra expression was predominantly found in Sca-1+/CD34+ cells. However, Sca-1+/CD342/Epcam+ cells could be divided in two
major subpopulations defined by Pdgfra expression. Relative quantification is given for corresponding selected subpopulation as indicated by
arrows. Panel C: Scatter plots of the detected cell populations for mouse 5, only.
doi:10.1371/journal.pone.0083917.g003

Single Cell Profiling of Lung Stem Cells

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e83917



19. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene

expression and its consequences. Cell 135: 216–226.
20. Bengtsson M, Hemberg M, Rorsman P, Stahlberg A (2008) Quantification of

mRNA in single cells and modelling of RT-qPCR induced noise. BMC Mol Biol

9: 63.
21. Reiter M, Kirchner B, Muller H, Holzhauer C, Mann W, et al. (2011)

Quantification noise in single cell experiments. Nucleic Acids Res 39: e124.
22. Alexander CM, Puchalski J, Klos KS, Badders N, Ailles L, et al. (2009)

Separating stem cells by flow cytometry: reducing variability for solid tissues.

Cell Stem Cell 5: 579–583.
23. Chubb JR, Trcek T, Shenoy SM, Singer RH (2006) Transcriptional pulsing of a

developmental gene. Curr Biol 16: 1018–1025.
24. Huh D, Paulsson J (2011) Non-genetic heterogeneity from stochastic partitioning

at cell division. Nat Genet 43: 95–100.
25. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA

synthesis in mammalian cells. PLoS Biol 4: e309.

26. Bearer EL (1991) Direct observation of actin filament severing by gelsolin and
binding by gCap39 and CapZ. J Cell Biol 115: 1629–1638.

27. Romaris M, Heredia A, Molist A, Bassols A (1991) Differential effect of
transforming growth factor beta on proteoglycan synthesis in human embryonic

lung fibroblasts. Biochim Biophys Acta 1093: 229–233.

28. Shao F, Zhang R, Don L, Ying K (2011) Overexpression of gelsolin-like actin-

capping protein is associated with progression of lung adenocarcinoma.

Tohoku J Exp Med 225: 95–101.

29. Spence HJ, Johnston I, Ewart K, Buchanan SJ, Fitzgerald U, et al. (2000) Krp1,

a novel kelch related protein that is involved in pseudopod elongation in

transformed cells. Oncogene 19: 1266–1276.

30. Tufvesson E, Westergren-Thorsson G (2003) Biglycan and decorin induce

morphological and cytoskeletal changes involving signalling by the small

GTPases RhoA and Rac1 resulting in lung fibroblast migration. J Cell Sci

116: 4857–4864.

31. Wiedl T, Arni S, Roschitzki B, Grossmann J, Collaud S, et al. (2011) Activity-

based proteomics: identification of ABHD11 and ESD activities as potential

biomarkers for human lung adenocarcinoma. J Proteomics 74: 1884–1894.

32. Lee WH, Wheatley W, Benedict WF, Huang CM, Lee EY (1986) Purification,

biochemical characterization, and biological function of human esterase D. Proc

Natl Acad Sci U S A 83: 6790–6794.

33. Recktenwald CV, Kellner R, Lichtenfels R, Seliger B (2008) Altered

detoxification status and increased resistance to oxidative stress by K-ras

transformation. Cancer Res 68: 10086–10093.

Single Cell Profiling of Lung Stem Cells

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83917


