20 research outputs found

    A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells

    Get PDF
    Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans. Loss of function in mice leads to glomerulosclerosis and sensineural deafness accompanied with mitochondrial DNA depletion. Mutations in the yeast homolog Sym1, and in the zebra fish homolog tra cause interesting, but not obviously related phenotypes, although the human gene can complement the yeast Sym1 mutation. The MPV17 protein is a hydrophobic membrane protein of 176 amino acids and unknown function. Initially localised in murine peroxisomes, it was later reported to be a mitochondrial inner membrane protein in humans and in yeast. To resolve this contradiction we tested two new mouse monoclonal antibodies directed against the human MPV17 protein in Western blots and immunohistochemistry on human U2OS cells. One of these monoclonal antibodies showed specific reactivity to a protein of 20 kD absent in MPV17 negative mouse cells. Immunofluorescence studies revealed colocalisation with peroxisomal, endosomal and lysosomal markers, but not with mitochondria. This data reveal a novel connection between a possible peroxisomal/endosomal/lysosomal function and mitochondrial DNA depletion

    The continuity of effect of schizophrenia polygenic risk score and patterns of cannabis use on transdiagnostic symptom dimensions at first-episode psychosis: findings from the EU-GEI study

    Get PDF
    Diagnostic categories do not completely reflect the heterogeneous expression of psychosis. Using data from the EU-GEI study, we evaluated the impact of schizophrenia polygenic risk score (SZ-PRS) and patterns of cannabis use on the transdiagnostic expression of psychosis. We analysed first-episode psychosis patients (FEP) and controls, generating transdiagnostic dimensions of psychotic symptoms and experiences using item response bi-factor modelling. Linear regression was used to test the associations between these dimensions and SZ-PRS, as well as the combined effect of SZ-PRS and cannabis use on the dimensions of positive psychotic symptoms and experiences. We found associations between SZ-PRS and (1) both negative (B = 0.18; 95%CI 0.03–0.33) and positive (B = 0.19; 95%CI 0.03–0.35) symptom dimensions in 617 FEP patients, regardless of their categorical diagnosis; and (2) all the psychotic experience dimensions in 979 controls. We did not observe associations between SZ-PRS and the general and affective dimensions in FEP. Daily and current cannabis use were associated with the positive dimensions in FEP (B = 0.31; 95%CI 0.11–0.52) and in controls (B = 0.26; 95%CI 0.06–0.46), over and above SZ-PRS. We provide evidence that genetic liability to schizophrenia and cannabis use map onto transdiagnostic symptom dimensions, supporting the validity and utility of the dimensional representation of psychosis. In our sample, genetic liability to schizophrenia correlated with more severe psychosis presentation, and cannabis use conferred risk to positive symptomatology beyond the genetic risk. Our findings support the hypothesis that psychotic experiences in the general population have similar genetic substrates as clinical disorders

    MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion

    No full text
    The mitochondrial (mt) DNA depletion syndromes (MDDS) are genetic disorders characterized by a severe, tissue-specific decrease of mtDNA copy number, leading to organ failure. There are two main clinical presentations: myopathic (OMIM 609560) and hepatocerebral1 (OMIM 251880). Known mutant genes, including TK2 (ref. 2), SUCLA2 (ref. 3), DGUOK (ref. 4) and POLG5,6, account for only a fraction of MDDS cases7. We found a new locus for hepatocerebral MDDS on chromosome 2p21-23 and prioritized the genes on this locus using a new integrative genomics strategy. One of the top-scoring candidates was the human ortholog of the mouse kidney disease gene Mpv17 (ref. 8). We found disease-segregating mutations in three families with hepatocerebral MDDS and demonstrated that, contrary to the alleged peroxisomal localization of the MPV17 gene product9, MPV17 is a mitochondrial inner membrane protein, and its absence or malfunction causes oxidative phosphorylation (OXPHOS) failure and mtDNA depletion, not only in affected individuals but also in Mpv17 \u2013/\u2013 mice

    MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion

    No full text
    The mitochondrial (mt) DNA depletion syndromes (MDDS) are genetic disorders characterized by a severe, tissue-specific decrease of mtDNA copy number, leading to organ failure. There are two main clinical presentations: myopathic (OMIM 609560) and hepatocerebral (OMIM 251880). Known mutant genes, including TK2, SUCLA2, DGUOK and POLG, account for only a fraction of MDDS cases. We found a new locus for hepatocerebral MDDS on chromosome 2p21-23 and prioritized the genes on this locus using a new integrative genomics strategy. One of the top-scoring candidates was the human ortholog of the mouse kidney disease gene Mpv17. We found disease-segregating mutations in three families with hepatocerebral MDDS and demonstrated that, contrary to the alleged peroxisomal localization of the MPV17 gene product, MPV17 is a mitochondrial inner membrane protein, and its absence or malfunction causes oxidative phosphorylation (OXPHOS) failure and mtDNA depletion, not only in affected individuals but also in Mpv17-/- mice
    corecore