26 research outputs found
Transcriptional control in the prereplicative phase of T4 development
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ70, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ70, which then allows the T4 activator MotA to also interact with σ70. In addition, AsiA restructuring of σ70 prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity
Hypothetical biomolecular probe based on a genetic switch with tunable symmetry and stability
Background: Genetic switches are ubiquitous in nature, frequently associated with the control of cellular functions and developmental programs. In the realm of synthetic biology, it is of great interest to engineer genetic circuits that can change their mode of operation from monostable to bistable, or even to multistable, based on the experimental fine-tuning of readily accessible parameters. In order to successfully design robust, bistable synthetic circuits to be used as biomolecular probes, or understand modes of operation of such naturally occurring circuits, we must identify parameters that are key in determining their characteristics. Results: Here, we analyze the bistability properties of a general, asymmetric genetic toggle switch based on a chemical-reaction kinetic description. By making appropriate approximations, we are able to reduce the system to two coupled differential equations. Their deterministic stability analysis and stochastic numerical simulations are in excellent agreement. Drawing upon this general framework, we develop a model of an experimentally realized asymmetric bistable genetic switch based on the LacI and TetR repressors. By varying the concentrations of two synthetic inducers, doxycycline and isopropyl ??-D-1-thiogalactopyranoside, we predict that it will be possible to repeatedly fine-tune the mode of operation of this genetic switch from monostable to bistable, as well as the switching rates over many orders of magnitude, in an experimental setting. Furthermore, we find that the shape and size of the bistability region is closely connected with plasmid copy number. Conclusions: Based on our numerical calculations of the LacI-TetR asymmetric bistable switch phase diagram, we propose a generic work-flow for developing and applying biomolecular probes: Their initial state of operation should be specified by controlling inducer concentrations, and dilution due to cellular division would turn the probes into memory devices in which information could be preserved over multiple generations. Additionally, insights from our analysis of the LacI-TetR system suggest that this particular system is readily available to be employed in this kind of probe.clos
High-Density Transcriptional Initiation Signals Underline Genomic Islands in Bacteria
Genomic islands (GIs), frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of “alien” elements which probably undergo special temporal–spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these “exotic” regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs) in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased “non-optimal” codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for “alien” regions, but also provide hints to the special evolutionary course and transcriptional regulation of GI regions
Architecture of the Yeast RNA Polymerase II Open Complex and Regulation of Activity by TFIIF
To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB–p-bromoacetamidobenzyl–EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain
Rate-limiting steps in transcription dictate sensitivity to variability in cellular components
Abstract Cell-to-cell variability in cellular components generates cell-to-cell diversity in RNA and protein production dynamics. As these components are inherited, this should also cause lineage-to-lineage variability in these dynamics. We conjectured that these effects on transcription are promoter initiation kinetics dependent. To test this, first we used stochastic models to predict that variability in the numbers of molecules involved in upstream processes, such as the intake of inducers from the environment, acts only as a transient source of variability in RNA production numbers, while variability in the numbers of a molecular species controlling transcription of an active promoter acts as a constant source. Next, from single-cell, single-RNA level time-lapse microscopy of independent lineages of Escherichia coli cells, we demonstrate the existence of lineage-to-lineage variability in gene activation times and mean RNA production rates, and that these variabilities differ between promoters and inducers used. Finally, we provide evidence that this can be explained by differences in the kinetics of the rate-limiting steps in transcription between promoters and induction schemes. We conclude that cell-to-cell and consequent lineage-to-lineage variability in RNA and protein numbers are both promoter sequence-dependent and subject to regulation