1,610 research outputs found

    Novel wire grid embedded C-sandwich radome structures for broadband airborne applications

    Get PDF
    The application of symmetric wire grid structures for the broadbanding of C-sandwich radome panel, with core thickness optimized for power transmission, is presented. The performance parameters of wire grid embedded C-sandwich wall are evaluated based on equivalent transmission line method. The superior broadband EM performance of wire compensated C-sandwich wall is established based on a comparative study with the conventional structure at normal incidence and at a high incidence angle often encountered in streamlined airborne radomes

    Electromagnetic Design of a Hybrid Variable Thickness Airborne Radome

    Get PDF
    Abstract attached as PD

    Investigation of features of May, 2001 tropical cyclone over the Arabian Sea through IRS-P4 and other satellite data

    Get PDF
    In this paper, utility of satellite derived atmospheric motion vectors and geophysical parameters is brought out to discern appropriate signals for improving short-range forecasts in respect of development/dissipation of tropical cyclones over the Indian region. Results of a particular case study of May, 2001 cyclone, which formed in the Arabian Sea are reported. Analysis of wind field with input of modified cloud motion vectors and water vapour wind vectors is performed utilizing Optimum Interpolation (OI) technique at 850 and 200 hPa for finding dynamical changes such as vorticity, convergence and divergence for the complete life period of this cyclone. Simultaneously, variations in geophysical parameters obtained from IRS-P4 and TRMM satellites in ascending and descending nodes are compared with dynamical variations for discerning some positive signals to improve short range forecasts over the Indian region. The enhancement of cyclonic vorticity at 200 hPa over larger area surrounding center of cyclone was observed from 26 to 28 May 2001 which gave a positive signal for dissipation of storm

    Proper depiction of monsoon depression through IRS-P4 MSMR

    Get PDF
    In this paper, daily variations of satellite-derived geophysical parameters such as integrated water vapour (IWV), cloud liquid water content (CLW), sea surface temperature (SST) and sea surface wind speed (SSW) have been studied for a case of monsoon depression that formed over the Bay of Bengal during 19th-24th August 2000. For this purpose, IRS P4 MSMR satellite data have been utilized over the domain equator - 25°N and 40°-100°E. An integrated approach of satellite data obtained from IRS-P4, METEOSAT-5 and INSAT was made for getting a signal for the development of monsoon depression over the Indian region. Variations in deep convective activity obtained through visible, infrared and OLR data at 06 UTC was thoroughly analyzed for the complete life cycle of monsoon depression. Geophysical parameters obtained through IRS-P4 satellite data were compared with vorticity, convergence and divergence at 850 and 200 hPa levels generated through cloud motion vectors (CMVs) and water vapour wind vectors (WVWVs) obtained from METEOSAT-5 satellite. This comparison was made for finding proper consistency of geophysical parameters with dynamical aspects of major convective activity of the depression. From the results of this study it is revealed that there was strengthening of sea surface winds to the south of low-pressure area prior to the formation of depression. This indicated the possibility of increase in cyclonic vorticity in the lower troposphere. Hence, wind field at 850 hPa with satellite input of CMVs in objective analysis of wind field using optimum interpolation (OI) scheme was computed. Maximum cyclonic vorticity field at 850 hPa was obtained in the region of depression just one day before its formation. Similarly, with the same procedure maximum anticyclonic vorticity was observed at 200 hPa with WVWVs input. Consistent convergence and divergence at 850 and 200 hPa was noticed with respect to these vorticities. In association with these developments, we could get lowest values of OLR (120W/m 2) associated with major convective activity that was consistent with the maximum values of integrated water vapour (6-8 gm/cm 2) and cloud liquid water content (50-60 mg/cm 2) persisting particularly in the southwest sector of the monsoon depression

    Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.

    Get PDF
    Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology

    Poro-mechanical analysis of a biomimetic scaffold for osteochondral defects

    Get PDF
    Osteochondral defects are focal areas of damage involving articular cartilage and sub-chondral bone. Tissue engineering scaffolds are used to improve the organism regeneration ability for this kind of injury, serving as biocompatible structures for cell viability and differentiation. Since biomechanical cues such as substrate stiffness, loading conditions and fluid permeation are fundamental for successful tissue repair, understanding how these features vary in the scaffold is of primary importance. Here we present a mathematical model based on porous media mechanics for the analysis of a tissue engineering scaffold. We consider a three-layered scaffold mimicking a complete osteochondral tissue and vary the mechanical properties of the intermediate layer over a physiological range. Our results show that the interstitial fluid pressure and the vertical component of the solid effective stress depend significantly on the stiffness and permeability of the intermediate layer under mechanical loading. By properly tuning these material properties, regimes of slow or fast temporal variations of mechanical stress can be obtained in the scaffold layer of interest

    Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene

    Full text link
    An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale 3D printing, catalysis, and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete angstrom-sized pores in monolayer graphene can be detected and then controlled using nanometer-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog
    corecore