47 research outputs found

    Trabecular bone volume and osteoprotegerin expression in uremic rats given high calcium

    Get PDF
    Calcium (Ca)-containing phosphate binders have been recommended for the treatment of hyperphosphatemia in children with chronic kidney disease. To study the effects of high Ca levels on trabecular bone volume (BV) and osteoprotegerin (OPG) expression in uremic young rats, a model of marked overcorrection of secondary hyperparathyroidism was created by providing a diet of high Ca to 5/6 nephrectomized young rats (Nx-Ca) for 4 weeks. The results of chondrocyte proliferation and apoptosis, osteoclastic activity, OPG expression and BV were compared among intact rats given the control diet, intact rats given a high Ca diet and 5/6 nephrectomized rats given the control diet (Nx-Control) and the high Ca diet (Nx-Ca). Ionized Ca levels were higher and parathyroid hormone levels were lower in Nx-Ca rats than in the other groups. Final weight, final length and final tibial length of Nx-Ca rats were significantly less than those of the other groups, although the length gain did not differ among the groups. The hypertrophic zone width was markedly enlarged in Nx-Ca rats. Chondrocyte proliferation rates did not differ among the groups, whereas osteoclastic activity was decreased in Nx-Ca rats compared with the Nx-Control animals. The OPG expression and BV were increased in Nx-Ca rats compared with the Nx-Control rats. Increased BV should improve bone strength, whereas disturbance of osteoclastogenesis interferes with bone remodeling. Bone quality has yet to be determined in high Ca-fed uremic young rats

    Global Analysis of the Impact of Environmental Perturbation on cis-Regulation of Gene Expression

    Get PDF
    Genetic variants altering cis-regulation of normal gene expression (cis-eQTLs) have been extensively mapped in human cells and tissues, but the extent by which controlled, environmental perturbation influences cis-eQTLs is unclear. We carried out large-scale induction experiments using primary human bone cells derived from unrelated donors of Swedish origin treated with 18 different stimuli (7 treatments and 2 controls, each assessed at 2 time points). The treatments with the largest impact on the transcriptome, verified on two independent expression arrays, included BMP-2 (t = 2h), dexamethasone (DEX) (t = 24h), and PGE2 (t = 24h). Using these treatments and control, we performed expression profiling for 18,144 RefSeq transcripts on biological replicates of the complete study cohort of 113 individuals (ntotal = 782) and combined it with genome-wide SNP-genotyping data in order to map treatment-specific cis-eQTLs (defined as SNPs located within the gene ±250 kb). We found that 93% of cis-eQTLs at 1% FDR were observed in at least one additional treatment, and in fact, on average, only 1.4% of the cis-eQTLs were considered as treatment-specific at high confidence. The relative invariability of cis-regulation following perturbation was reiterated independently by genome-wide allelic expression tests where only a small proportion of variance could be attributed to treatment. Treatment-specific cis-regulatory effects were, however, 2- to 6-fold more abundant among differently expressed genes upon treatment. We further followed-up and validated the DEX–specific cis-regulation of the MYO6 and TNC loci and found top cis-regulatory variants located 180 kb and 250 kb upstream of the transcription start sites, respectively. Our results suggest that, as opposed to tissue-specificity of cis-eQTLs, the interactions between cellular environment and cis-variants are relatively rare (∼1.5%), but that detection of such specific interactions can be achieved by a combination of functional genomic approaches as described here

    In Vitro Analysis of Integrated Global High-Resolution DNA Methylation Profiling with Genomic Imbalance and Gene Expression in Osteosarcoma

    Get PDF
    Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks

    Unveiling novel genes upregulated by both rhBMP2 and rhBMP7 during early osteoblastic transdifferentiation of C2C12 cells

    Get PDF
    <p>Abstract</p> <p>Findings</p> <p>We set out to analyse the gene expression profile of pre-osteoblastic C2C12 cells during osteodifferentiation induced by both rhBMP2 and rhBMP7 using DNA microarrays. Induced and repressed genes were intercepted, resulting in 1,318 induced genes and 704 repressed genes by both rhBMP2 and rhBMP7. We selected and validated, by RT-qPCR, 24 genes which were upregulated by rhBMP2 and rhBMP7; of these, 13 are related to transcription (<it>Runx2, Dlx1, Dlx2, Dlx5, Id1, Id2, Id3, Fkhr1, Osx, Hoxc8, Glis1, Glis3 </it>and <it>Cfdp1</it>), four are associated with cell signalling pathways (<it>Lrp6, Dvl1, Ecsit </it>and <it>PKCδ</it>) and seven are associated with the extracellular matrix (<it>Ltbp2, Grn, Postn, Plod1, BMP1, Htra1 </it>and <it>IGFBP-rP10</it>). The novel identified genes include: <it>Hoxc8, Glis1, Glis3, Ecsit, PKCδ, LrP6, Dvl1, Grn, BMP1, Ltbp2, Plod1, Htra1 </it>and <it>IGFBP-rP10</it>.</p> <p>Background</p> <p>BMPs (bone morphogenetic proteins) are members of the TGFβ (transforming growth factor-β) super-family of proteins, which regulate growth and differentiation of different cell types in various tissues, and play a critical role in the differentiation of mesenchymal cells into osteoblasts. In particular, rhBMP2 and rhBMP7 promote osteoinduction <it>in vitro </it>and <it>in vivo</it>, and both proteins are therapeutically applied in orthopaedics and dentistry.</p> <p>Conclusion</p> <p>Using DNA microarrays and RT-qPCR, we identified both previously known and novel genes which are upregulated by rhBMP2 and rhBMP7 during the onset of osteoblastic transdifferentiation of pre-myoblastic C2C12 cells. Subsequent studies of these genes in C2C12 and mesenchymal or pre-osteoblastic cells should reveal more details about their role during this type of cellular differentiation induced by BMP2 or BMP7. These studies are relevant to better understanding the molecular mechanisms underlying osteoblastic differentiation and bone repair.</p

    Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts.

    No full text
    Adipocytes and osteoblasts have common origins from fibroblastic stem cells. Consequently, modulation of the processes of adipogenesis and osteogenesis has implications for the possible treatment of metabolic bone diseases, such as osteoporosis, in which medullary fat accumulates and trabecular bone volume decreases. It is likely that the balance between these two systems is affected by particular endogenous growth factors which are known to affect bone metabolism. We have therefore investigated the effects of transforming growth factor beta (TGFbeta), basic fibroblast growth factor (bFGF) and dexamethasone (Dex) on cultured human bone marrow (HBM) fibroblastic cells to observe the effects on adipogenesis and osteogenesis. In the absence of fetal calf serum (FCS), TGFbeta caused a dose-dependent increase in cell growth and alkaline phosphatase activity (AP); however, in the presence of FCS growth was inhibited at high concentrations and AP unaffected. TGFbeta increased matrix proteoglycan and collagen synthesis. bFGF inhibited AP and increased colony number and size, while Dex treatment increased AP activity and colony number, and both factors in combination resulted in an additive increase in growth. Dex-induced adipocyte formation was accelerated but not increased by bFGF. A significant inhibition of adipogenesis by TGFbeta was observed within 7 days. These results demonstrate the importance of biological factors known to be involved in bone remodelling in the regulation of osteogenesis and adipogenesis

    Fates and osteogenic differentiation potential of human mesenchymal stem cells in immunocompromised mice.

    No full text
    Human mesenchymal stem cells (hMSCs) from bone marrow were genetically marked by using a murine leukaemia virus construct encoding enhanced green fluorescent protein (eGFP). The marked cells were either directly implanted into the tibialis anterior muscle or introduced into a variety of other tissue sites in immunocompromised mice (NOD/SCID and C.B-17 SCID/beige) to investigate their fates and differentiation potentials. It was observed that the hMSCs survived for up to 12 weeks and showed site-specific morphological phenotypes. hMSCs delivered by intravenous injection were found mainly in the lungs and were detected rarely in other organs. Histomorphometry showed that, after implantation of hMSCs into the tibialis anterior muscle juxtaskeletally, the areas of reactive host callus formation at 1 and 2 weeks and of ectopic human bone formation at 1 week were significantly increased compared with the control group. Expression of eGFP and human RUNX2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type I mRNAs were detected in mice implanted with the labelled hMSCs but not in sham-treated samples. Active clearance of the reactive callus and ectopic calcified tissue by osteoclast-like tartrate-resistant acid phosphatase-positive cells was observed. We conclude that the eGFP-labelled hMSCs can survive and retain the potential to differentiate morphologically into a variety of apparent mesenchymal phenotypes in vivo. Absolute confirmation of differentiation capacity requires further study and is complicated by known possibilities of fusion of donor and host cells or limited transfer of genetic material. Nevertheless, the genetically marked hMSCs are shown to participate extensively in bone formation and turnover. Control of the host osteoclast/macrophage responses resulting in clearance of formed osteogenic tissue warrants further investigation to promote prolonged human osteogenesis in immunocompromised mice. Furthermore, any proposed general cytotherapeutic strategy for enhanced osteogenesis is likely to require supplementation of local bone-forming biological signals
    corecore