26 research outputs found

    Leisure time physical activity in middle age predicts the metabolic syndrome in old age: results of a 28-year follow-up of men in the Oslo study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data are scarce on the long term relationship between leisure time physical activity, smoking and development of metabolic syndrome and diabetes. We wanted to investigate the relationship between leisure time physical activity and smoking measured in middle age and the occurrence of the metabolic syndrome and diabetes in men that participated in two cardiovascular screenings of the Oslo Study 28 years apart.</p> <p>Methods</p> <p>Men residing in Oslo and born in 1923–32 (n = 16 209) were screened for cardiovascular diseases and risk factors in 1972/3. Of the original cohort, those who also lived in same area in 2000 were invited to a repeat screening examination, attended by 6 410 men. The metabolic syndrome was defined according to a modification of the National Cholesterol Education Program criteria. Leisure time physical activity, smoking, educational attendance and the presence of diabetes were self-reported.</p> <p>Results</p> <p>Leisure time physical activity decreased between the first and second screening and tracked only moderately between the two time points (Spearman's ρ = 0.25). Leisure time physical activity adjusted for age and educational attendance was a significant predictor of both the metabolic syndrome and diabetes in 2000 (odds ratio for moderately vigorous versus sedentary/light activity was 0.65 [95% CI, 0.54–0.80] for the metabolic syndrome and 0.68 [0.52–0.91] for diabetes) (test for trend P < 0.05). However, when adjusted for more factors measured in 1972/3 including glucose, triglycerides, body mass index, treated hypertension and systolic blood pressure these associations were markedly attenuated. Smoking was associated with the metabolic syndrome but not with diabetes in 2000.</p> <p>Conclusion</p> <p>Physical activity during leisure recorded in middle age prior to the current waves of obesity and diabetes had an independent predictive association with the presence of the metabolic syndrome but not significantly so with diabetes 28 years later in life, when the subjects were elderly.</p

    Anamnestic risk factor questionnaire as reliable diagnostic instrument for osteoporosis (reduced bone morphogenic density)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis is a major health problem worldwide, and is included in the WHO list of the top 10 major diseases. However, it is often undiagnosed until the first fracture occurs, due to inadequate patient education and lack of insurance coverage for screening tests. Anamnestic risk factors like positive family anamnesis or early menopause are assumed to correlate with reduced BMD.</p> <p>Methods</p> <p>In our study of 78 patients with metaphyseal long bone fractures, we searched for a correlation between anamnestic risk factors, bone specific laboratory values, and the bone morphogenic density (BMD). Each indicator was examined as a possible diagnostic instrument for osteoporosis. The secondary aim of this study was to demonstrate the high prevalence of osteoporosis in patients with metaphyseal fractures.</p> <p>Results</p> <p>76.9% of our fracture patients had decreased bone density and 43.6% showed manifest osteoporosis in DXA (densitometry) measurements. Our questionnaire, identifying anamnestic risk factors, correlated highly significantly (p = 0.01) with reduced BMD, whereas seven bone-specific laboratory values (p = 0.046) correlated significantly.</p> <p>Conclusions</p> <p>Anamnestic risk factors correlate with pathological BMD. The medical questionnaire used in this study would therefore function as a cost-effective primary diagnostic instrument for identification of osteoporosis patients.</p

    External validation of the garvan nomograms for predicting absolute fracture risk: The tromsø study

    Full text link
    Results: The incidence of osteoporotic and hip fracture was 31.5 and 8.6 per 1000 population in women, respectively; in men the corresponding incidence was 12.2 and 5.1. The predicted 5-year and 10-year probability of fractures was consistently higher in the fracture group than the non-fracture group for all models. The 10-year predicted probabilities of hip fracture in those with fracture was 2.8 (women) to 3.1 times (men) higher than those without fracture. There was a close agreement between predicted and observed risk in both sexes and up to the fifth quintile. Among those in the highest quintile of risk, the models over-estimated the risk of fracture. Models with BMD performed better than models with body weight in correct classification of risk in individuals with and without fracture. The overall net decrease in reclassification of the model with weight compared to the model with BMD was 10.6% (p = 0.008) in women and 17.2% (p = 0.001) in men for osteoporotic fractures, and 13.3% (p = 0.07) in women and 17.5% (p = 0.09) in men for hip fracture.Conclusions: The Garvan Fracture Risk Calculator is valid and clinically useful in identifying individuals at high risk of fracture. The models with BMD performed better than those with body weight in fracture risk prediction.Background: Absolute risk estimation is a preferred approach for assessing fracture risk and treatment decision making. This study aimed to evaluate and validate the predictive performance of the Garvan Fracture Risk Calculator in a Norwegian cohort.Methods: The analysis included 1637 women and 1355 aged 60+ years from the Tromsø study. All incident fragility fractures between 2001 and 2009 were registered. The predicted probabilities of non-vertebral osteoporotic and hip fractures were determined using models with and without BMD. The discrimination and calibration of the models were assessed. Reclassification analysis was used to compare the models performance

    Measurement of cortical porosity of the proximal femur improves identification of women with nonvertebral fragility fractures

    Get PDF
    UNLABELLED: We tested whether cortical porosity of the proximal femur measured using StrAx1.0 software provides additional information to areal bone mineral density (aBMD) or Fracture Risk Assessment Tool (FRAX) in differentiating women with and without fracture. Porosity was associated with fracture independent of aBMD and FRAX and identified additional women with fractures than by osteoporosis or FRAX thresholds. INTRODUCTION: Neither aBMD nor the FRAX captures cortical porosity, a major determinant of bone strength. We therefore tested whether combining porosity with aBMD or FRAX improves identification of women with fractures. METHODS: We quantified femoral neck (FN) aBMD using dual-energy X-ray absorptiometry, FRAX score, and femoral subtrochanteric cortical porosity using StrAx1.0 software in 211 postmenopausal women aged 54-94 years with nonvertebral fractures and 232 controls in Tromsø, Norway. Odds ratios (ORs) were calculated using logistic regression analysis. RESULTS: Women with fractures had lower FN aBMD, higher FRAX score, and higher cortical porosity than controls (all p 20%, whereas porosity >80th percentile identified 61 women (29%). Porosity identified 26% additional women with fractures than identified by the osteoporosis threshold and 21% additional women with fractures than by this FRAX threshold. CONCLUSIONS: Cortical porosity is a risk factor for fracture independent of aBMD and FRAX and improves identification of women with fracture

    Progressively increasing fracture risk with advancing age after initial incident fragility fracture: The Tromsø Study

    Full text link
    The risk of subsequent fracture is increased after initial fractures; however, proper understanding of its magnitude is lacking. This population-based study examines the subsequent fracture risk in women and men by age and type of initial incident fracture. All incident nonvertebral fractures between 1994 and 2009 were registered in 27,158 participants in the Tromsø Study, Norway. The analysis included 3108 subjects with an initial incident fracture after the age of 49 years. Subsequent fracture (n = 664) risk was expressed as rate ratios (RR) and absolute proportions irrespective of death. The rates of both initial and subsequent fractures increased with age, the latter with the steepest curve. Compared with initial incident fracture rate of 30.8 per 1000 in women and 12.9 per 1000 in men, the overall age-adjusted RR of subsequent fracture was 1.3 (95% CI, 1.2-1.5) in women, and 2.0 (95% CI, 1.6-2.4) in men. Although the RRs decreased with age, the absolute proportions of those with initial fracture who suffered a subsequent fracture increased with age; from 9% to 30% in women and from 10% to 26% in men, between the age groups 50-59 to 80+ years. The type of subsequent fracture varied by age from mostly minor fractures in the youngest to hip or other major fractures in the oldest age groups, irrespective of type and severity of initial fracture. In women and men, 45% and 38% of the subsequent hip or other major fractures, respectively, were preceded by initial minor fractures. The risk of subsequent fracture is high in all age groups. At older age, severe subsequent fracture types follow both clinically severe and minor initial incident fractures. Any fragility fracture in the elderly reflects the need for specific osteoporosis management to reduce further fracture risk. © 2013 American Society for Bone and Mineral Research. © 2013 American Society for Bone and Mineral Research
    corecore