35 research outputs found

    Short-Term Compassion Training Increases Prosocial Behavior in a Newly Developed Prosocial Game

    Get PDF
    Compassion has been suggested to be a strong motivator for prosocial behavior. While research has demonstrated that compassion training has positive effects on mood and health, we do not know whether it also leads to increases in prosocial behavior. We addressed this question in two experiments. In Experiment 1, we introduce a new prosocial game, the Zurich Prosocial Game (ZPG), which allows for repeated, ecologically valid assessment of prosocial behavior and is sensitive to the influence of reciprocity, helping cost, and distress cues on helping behavior. Experiment 2 shows that helping behavior in the ZPG increased in participants who had received short-term compassion training, but not in participants who had received short-term memory training. Interindividual differences in practice duration were specifically related to changes in the amount of helping under no-reciprocity conditions. Our results provide first evidence for the positive impact of short-term compassion training on prosocial behavior towards strangers in a training-unrelated task

    Identification of factors associated with morbidity and postoperative length of stay in surgically managed chronic subdural haematoma using electronic health records: a retrospective cohort study

    No full text
    IntroductionChronic subdural haematoma (cSDH) tends to occur in older patients, often with significant comorbidity. The incidence and effect of medical complications as well as the impact of intraoperative management strategies are now attracting increasing interest.ObjectivesWe used electronic health record data to study the profile of in-hospital morbidity and examine associations between various intraoperative events and postoperative stay.Design, setting and participantsSingle-centre, retrospective cohort of 530 cases of cSDH (2014–2019) surgically evacuated under general anaesthesia at a neurosciences centre in Cambridge, UK.Methods and outcome definitionComplications were defined using a modified Electronic Postoperative Morbidity Score. Association between complications and intraoperative care (time with mean arterial pressure &lt;80 mm Hg, time outside of end-tidal carbon dioxide (ETCO2) range of 3–5 kPa, maintenance anaesthetic, operative time and opioid dose) on postoperative stay was assessed using Cox regression.Results53 (10%) patients suffered myocardial injury, while 24 (4.5%) suffered acute renal injury. On postoperative day 3 (D3), 280 (58% of remaining) inpatients suffered at least 1 complication. D7 rate was comparable (57%). Operative time was the only intraoperative event associated with postoperative stay (HR for discharge: 0.97 (95% CI: 0.95 to 0.99)). On multivariable analysis, postoperative complications (0.61 (0.55 to 0.68)), anticoagulation (0.45 (0.37 to 0.54)) and cognitive impairment (0.71 (0.58 to 0.87)) were associated with time to discharge.ConclusionsThere is a high postoperative morbidity burden in this cohort, which was associated with postoperative stay. We found no evidence of an association between intraoperative events and postoperative stay.</jats:sec

    Brain injury in COVID-19 is associated with dysregulated innate and adaptive immune responses

    No full text
    COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury (neurofilament light [NfL], glial fibrillary acidic protein [GFAP] and total tau) and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalisation, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterised by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible
    corecore