845 research outputs found
Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes
Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution. © 2013 Pope et al
The inevitable youthfulness of known high-redshift radio galaxies
Radio galaxies can be seen out to very high redshifts, where in principle
they can serve as probes of the early evolution of the Universe. Here we show
that for any model of radio-galaxy evolution in which the luminosity decreases
with time after an initial rapid increase (that is, essentially all reasonable
models), all observable high-redshift radio-galaxies must be seen when the
lobes are less than 10^7 years old. This means that high-redshift radio
galaxies can be used as a high-time-resolution probe of evolution in the early
Universe. Moreover, this result helps to explain many observed trends of
radio-galaxy properties with redshift [(i) the `alignment effect' of optical
emission along radio-jet axes, (ii) the increased distortion in radio
structure, (iii) the decrease in physical sizes, (iv) the increase in radio
depolarisation, and (v) the increase in dust emission] without needing to
invoke explanations based on cosmology or strong evolution of the surrounding
intergalactic medium with cosmic time, thereby avoiding conflict with current
theories of structure formation.Comment: To appear in Nature. 4 pages, 2 colour figures available on request.
Also available at http://www-astro.physics.ox.ac.uk/~km
Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices
Orbital physics plays a significant role for a vast number of important
phenomena in complex condensed matter systems such as high-T
superconductivity and unconventional magnetism. In contrast, phenomena in
superfluids -- especially in ultracold quantum gases -- are commonly well
described by the lowest orbital and a real order parameter. Here, we report on
the observation of a novel multi-orbital superfluid phase with a {\it complex}
order parameter in binary spin mixtures. In this unconventional superfluid, the
local phase angle of the complex order parameter is continuously twisted
between neighboring lattice sites. The nature of this twisted superfluid
quantum phase is an interaction-induced admixture of the p-orbital favored by
the graphene-like band structure of the hexagonal optical lattice used in the
experiment. We observe a second-order quantum phase transition between the
normal superfluid (NSF) and the twisted superfluid phase (TSF) which is
accompanied by a symmetry breaking in momentum space. The experimental results
are consistent with calculated phase diagrams and reveal fundamentally new
aspects of orbital superfluidity in quantum gas mixtures. Our studies might
bridge the gap between conventional superfluidity and complex phenomena of
orbital physics.Comment: 5 pages, 4 figure
Mechanical Strength of 17 134 Model Proteins and Cysteine Slipknots
A new theoretical survey of proteins' resistance to constant speed stretching
is performed for a set of 17 134 proteins as described by a structure-based
model. The proteins selected have no gaps in their structure determination and
consist of no more than 250 amino acids. Our previous studies have dealt with
7510 proteins of no more than 150 amino acids. The proteins are ranked
according to the strength of the resistance. Most of the predicted top-strength
proteins have not yet been studied experimentally. Architectures and folds
which are likely to yield large forces are identified. New types of potent
force clamps are discovered. They involve disulphide bridges and, in
particular, cysteine slipknots. An effective energy parameter of the model is
estimated by comparing the theoretical data on characteristic forces to the
corresponding experimental values combined with an extrapolation of the
theoretical data to the experimental pulling speeds. These studies provide
guidance for future experiments on single molecule manipulation and should lead
to selection of proteins for applications. A new class of proteins, involving
cystein slipknots, is identified as one that is expected to lead to the
strongest force clamps known. This class is characterized through molecular
dynamics simulations.Comment: 40 pages, 13 PostScript figure
Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis
In developing countries, deficiencies of micronutrients are thought to have a major impact on child development; however, a consensus on the specific relationship between dietary zinc intake and cognitive function remains elusive. The aim of this systematic review was to examine the relationship between zinc intake, status and indices of cognitive function in children and adults. A systematic literature search was conducted using EMBASE, MEDLINE and Cochrane Library databases from inception to March 2014. Included studies were those that supplied zinc as supplements or measured dietary zinc intake. A meta-analysis of the extracted data was performed where sufficient data were available. Of all of the potentially relevant papers, 18 studies met the inclusion criteria, 12 of which were randomised controlled trials (RCTs; 11 in children and 1 in adults) and 6 were observational studies (2 in children and 4 in adults). Nine of the 18 studies reported a positive association between zinc intake or status with one or more measure of cognitive function. Meta-analysis of data from the adult’s studies was not possible because of limited number of studies. A meta-analysis of data from the six RCTs conducted in children revealed that there was no significant overall effect of zinc intake on any indices of cognitive function: intelligence, standard mean difference of <0.001 (95% confidence interval (CI) –0.12, 0.13) P=0.95; executive function, standard mean difference of 0.08 (95% CI, –0.06, 022) P=0.26; and motor skills standard mean difference of 0.11 (95% CI –0.17, 0.39) P=0.43. Heterogeneity in the study designs was a major limitation, hence only a small number (n=6) of studies could be included in the meta-analyses. Meta-analysis failed to show a significant effect of zinc supplementation on cognitive functioning in children though, taken as a whole, there were some small indicators of improvement on aspects of executive function and motor development following supplementation but high-quality RCTs are necessary to investigate this further
Plasticity in the Olfactory System: Lessons for the Neurobiology of Memory
We are rapidly advancing toward an understanding of the molecular events underlying odor transduction, mechanisms of spatiotemporal central odor processing, and neural correlates of olfactory perception and cognition. A thread running through each of these broad components that define olfaction appears to be their dynamic nature. How odors are processed, at both the behavioral and neural level, is heavily dependent on past experience, current environmental context, and internal state. The neural plasticity that allows this dynamic processing is expressed nearly ubiquitously in the olfactory pathway, from olfactory receptor neurons to the higher-order cortex, and includes mechanisms ranging from changes in membrane excitability to changes in synaptic efficacy to neurogenesis and apoptosis. This review will describe recent findings regarding plasticity in the mammalian olfactory system that are believed to have general relevance for understanding the neurobiology of memory.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Genetic and other factors determining mannose-binding lectin levels in American Indians: the Strong Heart Study
<p>Abstract</p> <p>Background</p> <p>Mannose-binding lectin (MBL) forms an integral part of the innate immune system. Persistent, subclinical infections and chronic inflammatory states are hypothesized to contribute to the pathogenesis of atherosclerosis. MBL gene (<it>MBL2</it>) variants with between 12 to 25% allele frequency in Caucasian and other populations, result in markedly reduced expression of functional protein. Prospective epidemiologic studies, including a nested, case-control study from the present population, have demonstrated the ability of <it>MBL2 </it>genotypes to predict complications of atherosclerosis,. The genetic control of <it>MBL2 </it>expression is complex and genetic background effects in specific populations are largely unknown.</p> <p>Methods</p> <p>The Strong Heart Study is a longitudinal, cohort study of cardiovascular disease among American Indians. A subset of individuals genotyped for the above mentioned case-control study were selected for analysis of circulating MBL levels by double sandwich ELISA method. Mean MBL levels were compared between genotypic groups and multivariate regression was used to determine other independent factors influencing <it>MBL2 </it>expression.</p> <p>Results</p> <p>Our results confirm the effects of variant structural (B, C, and D) and promoter (H and Y) alleles that have been seen in other populations. In addition, MBL levels were found to be positively associated with male gender and hemoglobin A1c levels, but inversely related to triglyceride levels. Correlation was not found between MBL and other markers of inflammation.</p> <p>Conclusion</p> <p>New data is presented concerning the effects of known genetic variants on MBL levels in an American Indian population, as well as the relationship of <it>MBL2 </it>expression to clinical and environmental factors, including inflammatory markers.</p
Herbivore Preference for Native vs. Exotic Plants: Generalist Herbivores from Multiple Continents Prefer Exotic Plants That Are Evolutionarily Naïve
Enemy release and biotic resistance are competing, but not mutually exclusive,
hypotheses addressing the success or failure of non-native plants entering a new
region. Enemy release predicts that exotic plants become invasive by escaping
their co-adapted herbivores and by being unrecognized or unpalatable to native
herbivores that have not been selected to consume them. In contrast, biotic
resistance predicts that native generalist herbivores will suppress exotic
plants that will not have been selected to deter these herbivores. We tested
these hypotheses using five generalist herbivores from North or South America
and nine confamilial pairs of native and exotic aquatic plants. Four of five
herbivores showed 2.4–17.3 fold preferences for exotic over native plants.
Three species of South American apple snails (Pomacea sp.)
preferred North American over South American macrophytes, while a North American
crayfish Procambarus spiculifer preferred South American,
Asian, and Australian macrophytes over North American relatives. Apple snails
have their center of diversity in South America, but a single species
(Pomacea paludosa) occurs in North America. This species,
with a South American lineage but a North American distribution, did not
differentiate between South American and North American plants. Its preferences
correlated with preferences of its South American relatives rather than with
preferences of the North American crayfish, consistent with evolutionary inertia
due to its South American lineage. Tests of plant traits indicated that the
crayfish responded primarily to plant structure, the apple snails primarily to
plant chemistry, and that plant protein concentration played no detectable role.
Generalist herbivores preferred non-native plants, suggesting that intact guilds
of native, generalist herbivores may provide biotic resistance to plant
invasions. Past invasions may have been facilitated by removal of native
herbivores, introduction of non-native herbivores (which commonly prefer native
plants), or both
- …