9 research outputs found
Population Genetics of GYPB and Association Study between GYPB*S/s Polymorphism and Susceptibility to P. falciparum Infection in the Brazilian Amazon
Merozoites of Plasmodium falciparum invade through several pathways using different RBC receptors. Field isolates appear to use a greater variability of these receptors than laboratory isolates. Brazilian field isolates were shown to mostly utilize glycophorin A-independent invasion pathways via glycophorin B (GPB) and/or other receptors. The Brazilian population exhibits extensive polymorphism in blood group antigens, however, no studies have been done to relate the prevalence of the antigens that function as receptors for P. falciparum and the ability of the parasite to invade. Our study aimed to establish whether variation in the GYPB*S/s alleles influences susceptibility to infection with P. falciparum in the admixed population of Brazil.Two groups of Brazilian Amazonians from Porto Velho were studied: P. falciparum infected individuals (cases); and uninfected individuals who were born and/or have lived in the same endemic region for over ten years, were exposed to infection but have not had malaria over the study period (controls). The GPB Ss phenotype and GYPB*S/s alleles were determined by standard methods. Sixty two Ancestry Informative Markers were genotyped on each individual to estimate admixture and control its potential effect on the association between frequency of GYPB*S and malaria infection.GYPB*S is associated with host susceptibility to infection with P. falciparum; GYPB*S/GYPB*S and GYPB*S/GYPB*s were significantly more prevalent in the in the P. falciparum infected individuals than in the controls (69.87% vs. 49.75%; P<0.02). Moreover, population genetics tests applied on the GYPB exon sequencing data suggest that natural selection shaped the observed pattern of nucleotide diversity.Epidemiological and evolutionary approaches suggest an important role for the GPB receptor in RBC invasion by P. falciparum in Brazilian Amazons. Moreover, an increased susceptibility to infection by this parasite is associated with the GPB S+ variant in this population
Voting as a Signaling Device
In this paper, citizens vote in order to influence the election outcome and in order to signal their unobserved characteristics to others. The model is one of rational voting and generates the following predictions: (i) The paradox of not voting does not arise, because the benefit of voting does not vanish with population size. (ii) Turnout in elections is positively related to the importance of social interactions. (iii) Voting may exhibit bandwagon effects and small changes in the electoral incentives may generate large changes in turnout due to signaling effects. (iv) Signaling incentives increase the sensitivity of turnout to voting incentives in communities with low opportunity cost of social interaction, while the opposite is true for communities with high cost of social interaction. Therefore, the model predicts less volatile turnout for the latter type of communities
The Impact of Economic Development on Political Interest Across Social Classes in China: Turning the Chinese Dream into a Chinese Reality?
Rural-Urban Effect Gap of Time Spent Online on Voter Turnout in China: Evidence from the 2010/2014 National Survey
Residential Satisfaction and Civic Engagement: Understanding the Causes of Community Participation
Residential satisfaction, Civic engagement, Political participation,
Forecasting societies' adaptive capacities through a demographic metabolism model
In seeking to understand how future societies will be affected by climate change we cannot simply assume they will be identical to those of today, because climate and societies are both dynamic. Here we propose that the concept of demographic metabolism and the associated methods of multi-dimensional population projections provide an effective analytical toolbox to forecast important aspects of societal change that affect adaptive capacity. We present an example of how the changing educational composition of future populations can influence societies' adaptive capacity. Multi-dimensional population projections form the human core of the Shared Socioeconomic Pathways scenarios, and knowledge and analytical tools from demography have great value in assessing the likely implications of climate change on future human well-being
