1,130 research outputs found
Cellular immune responses in amniotic fluid of women with preterm labor and intraâ amniotic infection or intraâ amniotic inflammation
ProblemPreterm birth is commonly preceded by preterm labor, a syndrome that is causally linked to both intraâ amniotic infection and intraâ amniotic inflammation. However, the stereotypical cellular immune responses in these two clinical conditions are poorly understood.Method of studyAmniotic fluid samples (n = 26) were collected from women diagnosed with preterm labor and intraâ amniotic infection (amniotic fluid ILâ 6 concentrations â ¥2.6 ng/mL and culturable microorganisms, n = 10) or intraâ amniotic inflammation (amniotic fluid ILâ 6 concentrations â ¥2.6 ng/mL without culturable microorganisms, n = 16). Flow cytometry was performed to evaluate the phenotype and number of amniotic fluid leukocytes. Amniotic fluid concentrations of classical proâ inflammatory cytokines, type 1 and type 2 cytokines, and Tâ cell chemokines were determined using immunoassays.ResultsWomen with spontaneous preterm labor and intraâ amniotic infection had (a) a greater number of total leukocytes, including neutrophils and monocytes/macrophages, in amniotic fluid; (b) a higher number of total T cells and CD4+ T cells, but not CD8+ T cells or B cells, in amniotic fluid; and (c) increased amniotic fluid concentrations of ILâ 6, ILâ 1β, and ILâ 10, compared to those with intraâ amniotic inflammation. However, no differences in amniotic fluid concentrations of Tâ cell cytokines and chemokines were observed between these two clinical conditions.ConclusionThe cellular immune responses observed in women with preterm labor and intraâ amniotic infection are more severe than in those with intraâ amniotic inflammation, and neutrophils, monocytes/macrophages, and CD4+ T cells are the main immune cells responding to microorganisms that invade the amniotic cavity. These findings provide insights into the intraâ amniotic immune mechanisms underlying the human syndrome of preterm labor.The relative distribution of innate and adaptive immune cell subsets in amniotic fluid of women with preterm labor and intraâ amniotic inflammation. Flow cytometry analysis is shown as a tâ SNE plot.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151891/1/aji13171_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151891/2/aji13171.pd
Small-Scale Fisheries Bycatch Jeopardizes Endangered Pacific Loggerhead Turtles
Background. Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99 % of the world’s 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. Principal Findings/Methodology. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996–2005 ranged oceanwide, but juveniles spent 70 % of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year 21, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhea
Diversity of floral visitors to sympatric Lithophragma species differing in floral morphology
Most coevolving relationships between pairs of species are embedded in a broader multispecific interaction network. The mutualistic interaction between Lithophragma parviflorum (Saxifragaceae) and its pollinating floral parasite Greya politella (Lepidoptera, Prodoxidae) occurs in some communities as a pairwise set apart from most other interactions in those communities. In other communities, however, this pair of species occurs with congeners and with other floral visitors to Lithophragma. We analyzed local and geographic differences in the network formed by interactions between Lithophragma plants and Greya moths in communities containing two Lithophragma species, two Greya species, and floral visitors other than Greya that visit Lithophragma flowers. Our goal was to evaluate if non-Greya visitors were common, if visitor assembly differs between Lithophragma species and populations and if these visitors act as effective pollinators. Sympatric populations of L. heterophyllum and L. parviflorum differ in floral traits that may affect assemblies of floral visitors. Visitation rates by non-Greya floral visitors were low, and the asymptotic number of visitor species was less than 20 species in all populations. Lithophragma species shared some of the visitors, with visitor assemblages differing between sites more for L. heterophyllum than for L. parviflorum. Pollination efficacy experiments showed that most visitors were poor pollinators. Single visits to flowers by this assemblage of species resulted in significantly higher seed set in Lithophragma heterophyllum (30.6 ± 3.9 SE) than in L. parviflorum (4.7 ± 3.4 SE). This difference was consistent between sites, suggesting that these visitors provide a better fit to the floral morphology of L. heterophyllum. Overall, none of the non-Greya visitors appears to be either sufficiently common or efficient as a pollinator to impose strong selection on any of these four Lithophragma populations in comparison with Greya, which occurs within almost all populations of these species throughout their geographic ranges
Autoantibodies to Agrin in Myasthenia Gravis Patients
To determine if patients with myasthenia gravis (MG) have antibodies to agrin, a proteoglycan released by motor neurons and is critical for neuromuscular junction (NMJ) formation, we collected serum samples from 93 patients with MG with known status of antibodies to acetylcholine receptor (AChR), muscle specific kinase (MuSK) and lipoprotein-related 4 (LRP4) and samples from control subjects (healthy individuals and individuals with other diseases). Sera were assayed for antibodies to agrin. We found antibodies to agrin in 7 serum samples of MG patients. None of the 25 healthy controls and none of the 55 control neurological patients had agrin antibodies. Two of the four triple negative MG patients (i.e., no detectable AChR, MuSK or LRP4 antibodies, AChR-/MuSK-/LRP4-) had antibodies against agrin. In addition, agrin antibodies were detected in 5 out of 83 AChR+/MuSK-/LRP4- patients but were not found in the 6 patients with MuSK antibodies (AChR-/MuSK+/LRP4-). Sera from MG patients with agrin antibodies were able to recognize recombinant agrin in conditioned media and in transfected HEK293 cells. These sera also inhibited the agrin-induced MuSK phosphorylation and AChR clustering in muscle cells. Together, these observations indicate that agrin is another autoantigen in patients with MG and agrin autoantibodies may be pathogenic through inhibition of agrin/LRP4/MuSK signaling at the NMJ
Long-Term Climate Forcing in Loggerhead Sea Turtle Nesting
The long-term variability of marine turtle populations remains poorly understood,
limiting science and management. Here we use basin-scale climate indices and
regional surface temperatures to estimate loggerhead sea turtle (Caretta
caretta) nesting at a variety of spatial and temporal scales.
Borrowing from fisheries research, our models investigate how oceanographic
processes influence juvenile recruitment and regulate population dynamics. This
novel approach finds local populations in the North Pacific and Northwest
Atlantic are regionally synchronized and strongly correlated to ocean
conditions—such that climate models alone explain up to 88% of the
observed changes over the past several decades. In addition to its performance,
climate-based modeling also provides mechanistic forecasts of historical and
future population changes. Hindcasts in both regions indicate climatic
conditions may have been a factor in recent declines, but future forecasts are
mixed. Available climatic data suggests the Pacific population will be
significantly reduced by 2040, but indicates the Atlantic population may
increase substantially. These results do not exonerate anthropogenic impacts,
but highlight the significance of bottom-up oceanographic processes to marine
organisms. Future studies should consider environmental baselines in assessments
of marine turtle population variability and persistence
Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status
Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d−1) and transit at high speeds (20–45 km d−1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d−1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic
Cardio-metabolic risk in 5-year-old children prenatally exposed to maternal psychosocial stress: the ABCD study
<p>Abstract</p> <p>Background</p> <p>Recent evidence, both animal and human, suggests that modifiable factors during fetal and infant development predispose for cardiovascular disease in adult life and that they may become possible future targets for prevention. One of these factors is maternal psychosocial stress, but so far, few prospective studies have been able to investigate the longer-term effects of stress in detail, i.e. effects in childhood. Therefore, our general aim is to study whether prenatal maternal psychosocial stress is associated with an adverse cardio-metabolic risk profile in the child at age five.</p> <p>Methods/design</p> <p>Data are available from the Amsterdam Born Children and their Development (ABCD) study, a prospective birth cohort in the Netherlands. Between 2003-2004, 8,266 pregnant women filled out a questionnaire including instruments to determine anxiety (STAI), pregnancy related anxiety (PRAQ), depressive symptoms (CES-D), parenting stress (PDH scale) and work stress (Job Content Questionnaire).</p> <p>Outcome measures in the offspring (age 5-7) are currently collected. These include lipid profile, blood glucose, insulin sensitivity, body composition (body mass index, waist circumference and bioelectrical impedance analysis), autonomic nervous system activity (parasympathetic and sympathetic measures) and blood pressure.</p> <p>Potential mediators are maternal serum cortisol, gestational age and birth weight for gestational age (intrauterine growth restriction). Possible gender differences in programming are also studied.</p> <p>Discussion</p> <p>Main strengths of the proposed study are the longitudinal measurements during three important periods (pregnancy, infancy and childhood), the extensive measurement of maternal psychosocial stress with validated questionnaires and the thorough measurement of the children's cardio-metabolic profile. The availability of several confounding factors will give us the opportunity to quantify the independent contribution of maternal stress during pregnancy to the cardio-metabolic risk profile of her offspring. Moreover, the mediating role of maternal cortisol, intrauterine growth, gestational age and potential gender differences can be explored extensively. If prenatal psychosocial stress is indeed found to be associated with the offspring's cardio-metabolic risk, these results support the statement that primary prevention of cardiovascular disease may start even before birth by reducing maternal stress during pregnancy.</p
Global Assessment of Extinction Risk to Populations of Sockeye Salmon Oncorhynchus nerka
BACKGROUND: Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon. METHODS/PRINCIPAL FINDINGS: We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions. CONCLUSIONS/SIGNIFICANCE: Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct
- …