456 research outputs found

    Clostridium difficile colitis in patients after kidney and pancreas-kidney transplantation

    Get PDF
    Limited data exist about Clostridium difficile colitis (CDC) in solid organ transplant patients. Between 1/1/99 and 12/31/02, 600 kidney and 102 pancreas–kidney allograft recipients were transplanted. Thirty-nine (5.5%) of these patients had CDC on the basis of clinical and laboratory findings. Of these 39 patients, 35 have information available for review. CDC developed at a median of 30 days after transplantation, and the patients undergoing pancreas–kidney transplantation had a slightly higher incidence of CDC than recipients of kidney alone (7.8% vs. 4.5%, P> 0.05). All but one patient presented with diarrhea. Twenty-four patients (64.9%) were diagnosed in the hospital, and CDC occurred during first hospitalization in 14 patients (40%). Treatment was with oral metronidazole (M) in 33 patients (94%)and M + oral vancomycin (M + V) in 2 patients. Eight patients had recurrent CDC, which occurred at a median of 30 days (range 15–314) after the first episode. Two patients (5.7%) developed fulminant CDC, presented with toxic megacolon, and underwent colectomy. One of them died; the other patient survived after colectomy. CDC should be considered as a diagnosis in transplant patients with history of diarrhea after antibiotic use, and should be treated aggressively before the infection becomes complicated

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    What’s in the Pool? A Comprehensive Identification of Disinfection By-products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    Get PDF
    38 páginas, 2 figuras, 4 tablas.-- PDF con material suplementario.[BACKGROUND]: Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity.[OBJECTIVES]: We performed a comprehensive identification of DBPs and disinfectant species in waters from public swimming pools in Barcelona, Catalonia, Spain, that disinfect with either chlorine or bromine, and we determined the mutagenicity of the waters to compare to the analytical results.[METHODS]: We used gas chromatography (GC)/mass spectrometry (MS) to measure THMs in water and GC with electron capture detection (ECD) for air, low and high resolution GC/MS to comprehensively identify DBPs, photometry to measure disinfectant species (free chlorine, monochloroamine, dichloramine, and trichloramine) in the waters, and an ion chromatography method to measure trichloramine in air. We assessed mutagenicity in the Salmonella mutagenicity assay.[RESULTS]: We identified more than 100 DBPs, including many nitrogen-containing DBPs that were likely formed from nitrogen-containing precursors from human inputs, such as urine, sweat, and skin cells. Many DBPs were new and have not been reported previously in either swimming pool or drinking waters. Bromoform levels were greater in the brominated vs. chlorinated pool waters, but many brominated DBPs were also identified in the chlorinated waters. The pool waters were mutagenic at levels similar to that of drinking water (~1200 revertants/L-eq in strain TA100 –S9 mix).[CONCLUSIONS]: This study identified many new DBPs not identified previously in swimming pool or drinking water and found that swimming pool waters are as mutagenic as typical drinking waters.This research was supported by EPA’s intramural research program and the Spanish grants SAF2005-07643-C03-01 (Plan Nacional) and CP06/00341 (Fondo de Investigación Sanitaria). CMV and LFR have, respectively, a contract and a predoctoral fellowship by the Instituto de Salud Carlos III (CP06/00341, FI06/00651). CL acknowledges a grant from the Agreement between Santander-Central Hispano and CSIC.Peer reviewe
    corecore