10,325 research outputs found

    PediDraw: A web-based tool for drawing a pedigree in genetic counseling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drawing a pedigree is a prerequisite in genetic counseling. In medical records, a pedigree is useful to document the family history of the patient. Drawing a pedigree is also necessary in collecting genetic resources for medical research such as positional cloning. Currently, most pedigrees are drawn by hand or by drawing software. Due to the special requirements in a standardized pedigree, generating a pedigree by these methods is usually time-consuming and requires professionals. This limits the usage of a pedigree as demanded in remote diagnosis or online counseling from the counselees to send an electronic pedigree.</p> <p>Results</p> <p>We developed an online pedigree drawing tool, PediDraw, which enables users to generate pedigrees after inputting the family information step-by-step on web. It outputs a pedigree or table to present a family history to the counselors.</p> <p>Conclusion</p> <p>PediDraw is a user-friendly web-based drawing tool. It is accessible via Internet.</p

    Marking and Quantifying IL-17A-Producing Cells In Vivo

    Get PDF
    Interleukin (IL)-17A plays an important role in host defense against a variety of pathogens and may also contribute to the pathogenesis of autoimmune diseases. However, precise identification and quantification of the cells that produce this cytokine in vivo have not been performed. We generated novel IL-17A reporter mice to investigate expression of IL-17A during Klebsiella pneumoniae infection and during experimental autoimmune encephalomyelitis, conditions previously demonstrated to potently induce IL-17A production. In both settings, the majority of IL-17A was produced by non-CD4+ T cells, particularly γδ T cells, but also invariant NKT cells and other CD4−CD3ε+ cells. As measured in dual-reporter mice, IFN-γ-producing Th1 cells greatly outnumbered IL-17A-producing Th17 cells throughout both challenges. Production of IL-17A by cells from unchallenged mice or by non-T cells under any condition was not evident. Administration of IL-1β and/or IL-23 elicited rapid production of IL-17A by γδ T cells, invariant NKT cells and other CD4−CD3ε+ cells in vivo, demonstrating that these cells are poised for rapid cytokine production and likely comprise the major sources of this cytokine during acute immunologic challenges

    Monotone Drawings of kk-Inner Planar Graphs

    Full text link
    A kk-inner planar graph is a planar graph that has a plane drawing with at most kk {internal vertices}, i.e., vertices that do not lie on the boundary of the outer face of its drawing. An outerplanar graph is a 00-inner planar graph. In this paper, we show how to construct a monotone drawing of a kk-inner planar graph on a 2(k+1)n×2(k+1)n2(k+1)n \times 2(k+1)n grid. In the special case of an outerplanar graph, we can produce a planar monotone drawing on a n×nn \times n grid, improving previously known results.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018). Revised introductio

    MC-Simulation of the Transverse Double Spin Asymmetry for RHIC

    Get PDF
    Using {\sc Sphinx tt}, a new MC simulation program for transverse polarized nucleon--nucleon scattering based on {\sc Pythia~5.6}, we calculate the transverse double spin asymmetry ATTA^{TT} in the Drell-Yan process. If one assumes (quite arbitrarily) that the transversity parton distribution δq(x,Q2)\delta q(x,Q^2) equals the helicity distribution Δq(x,Q2)\Delta q(x,Q^2) at some low Q02Q_0^2 scale, the resulting asymmetry is of order 1\%. In this case is ATTA^{TT} would hardly be be measurable with PHENIX at RHIC.Comment: 17 pages, 5 figure

    Surface electrons at plasma walls

    Full text link
    In this chapter we introduce a microscopic modelling of the surplus electrons on the plasma wall which complements the classical description of the plasma sheath. First we introduce a model for the electron surface layer to study the quasistationary electron distribution and the potential at an unbiased plasma wall. Then we calculate sticking coefficients and desorption times for electron trapping in the image states. Finally we study how surplus electrons affect light scattering and how charge signatures offer the possibility of a novel charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse

    Behavior Management

    Full text link

    Planets and Axisymmetric Mass Loss

    Get PDF
    Bipolar planetary nebulae (PNe), as well as extreme elliptical PNe are formed through the influence of a stellar companion. But half of all PN progenitors are not influenced by any stellar companion, and, as I show here, are expected to rotate very slowly on reaching the upper asymptotic giant branch; hence they expect to form spherical PNe, unless they are spun-up. But since most PNe are not spherical, I argue that about 50 percents of AGB stars are spun-up by planets, even planets having a mass as low as 0.01 times the mass of Jupiter, so they form elliptical PNe. The rotation by itself will not deform the AGB wind, but may trigger another process that will lead to axisymmetric mass loss, e.g., weak magnetic activity, as in the cool magnetic spots model. This model also explains the transition from spherical to axisymmetric mass loss on the upper AGB. For such low mass planets to substantially spin-up the stellar envelope, they should enter the envelope when the star reaches the upper AGB. This "fine-tuning" can be avoided if there are several planets on average around each star, as is the case in the solar system, so that one of them is engulfed when the star reaches the upper AGB.Comment: 8 pages, 1 figure. To appear in the proceedings of the conference, "Post-AGB Objects (proto-planetary nebulae) as a Phase of Stellar Evolution", Torun, Poland, July 5-7, 2000, eds. R. Szczerba, R. Tylenda, and S.K. Gorn

    Importance of dose-schedule of 5-aza-2'-deoxycytidine for epigenetic therapy of cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'-deoxycytidine (DAC). Although clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established.</p> <p>Methods</p> <p>Clonogenic assays were performed on leukemic and tumor cell lines to evaluate the <it>in vitro </it>antineoplastic activity of DAC. The reactivation of TSGs and inhibition of DNA methylation by DAC were investigated by reverse transcriptase-PCR and Line-1 assays. The <it>in vivo </it>antineoplastic activity of DAC administered as an i.v. infusion was evaluated in mice with murine L1210 leukemia by measurement of survival time, and in mice bearing murine EMT6 mammary tumor by excision of tumor after chemotherapy for an <it>in vitro </it>clonogenic assay.</p> <p>Results</p> <p>Increasing the DAC concentration and duration of exposure produced a greater loss of clonogenicity for both human leukemic and tumor cell lines. The reactivation of the TSGs (<it>p57KIP2 </it>in HL-60 leukemic cells and <it>p16CDKN2A </it>in Calu-6 lung carcinoma cells) and the inhibition of global DNA methylation in HL-60 leukemic cells increased with DAC concentration. In mice with L1210 leukemia and in mice bearing EMT6 tumors, the antineoplastic action of DAC also increased with the dose. The plasma level of DAC that produced a very potent antineoplastic effect in mice with leukemia or solid tumors was > 200 ng/ml (> 1 μM).</p> <p>Conclusion</p> <p>We have shown that intensification of the DAC dose markedly increased its antineoplastic activity in mouse models of cancer. Our data also show that there is a good correlation between the concentrations of DAC that reduce <it>in vitro </it>clonogenicity, reactivate TSGs and inhibit DNA methylation. These results suggest that the antineoplastic action of DAC is related to its epigenetic action. Our observations provide a strong rationale to perform clinical trials using dose intensification of DAC to maximize the chemotherapeutic potential of this epigenetic agent in patients with cancer.</p

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies
    corecore