102 research outputs found

    Genetic Predisposition of Donors Affects the Allograft Outcome in Kidney Transplantation; Polymorphisms of Stromal-Derived Factor-1 and CXC Receptor 4

    Get PDF
    Genetic interaction between donor and recipient may dictate the impending responses after transplantation. In this study, we evaluated the role of the genetic predispositions of stromal-derived factor-1 (SDF1) [rs1801157 (G>A)] and CXC receptor 4 (CXCR4) [rs2228014 (C>T)] on renal allograft outcomes. A total of 335 pairs of recipients and donors were enrolled. Biopsy-proven acute rejection (BPAR) and long-term graft survival were traced. Despite similar allele frequencies between donors and recipients, minor allele of SDF1 rs1801157 (GA+AA) from donor, not from recipients, has a protective effect on the development of BPAR compared to wild type donor (GG) (P = 0.005). Adjustment for multiple covariates did not affect this result (odds ratio 0.39, 95% C.I 0.20–0.76, P = 0.006). CXCR4 rs2228014 polymorphisms from donor or recipient did not affect the incidence of acute rejection. SDF1 was differentially expressed in renal tubular epithelium with acute rejection according to genetic variations of donor rs1801157 showing higher expressions in the grafts from GG donors. Contrary to the development of BPAR, the presence of minor allele rs1801157 A, especially homozygocity, predisposed poor graft survival (P = 0.001). This association was significant after adjusting for several risk factors (hazard ratio 3.01; 95% C.I = 1.19–7.60; P = 0.020). The allelic variation of recipients, however, was not associated with graft loss. A donor-derived genetic polymorphism of SDF1 has influenced the graft outcome. Thus, the genetic predisposition of donor should be carefully considered in transplantation

    Logistics of community smallpox control through contact tracing and ring vaccination: a stochastic network model

    Get PDF
    BACKGROUND: Previous smallpox ring vaccination models based on contact tracing over a network suggest that ring vaccination would be effective, but have not explicitly included response logistics and limited numbers of vaccinators. METHODS: We developed a continuous-time stochastic simulation of smallpox transmission, including network structure, post-exposure vaccination, vaccination of contacts of contacts, limited response capacity, heterogeneity in symptoms and infectiousness, vaccination prior to the discontinuation of routine vaccination, more rapid diagnosis due to public awareness, surveillance of asymptomatic contacts, and isolation of cases. RESULTS: We found that even in cases of very rapidly spreading smallpox, ring vaccination (when coupled with surveillance) is sufficient in most cases to eliminate smallpox quickly, assuming that 95% of household contacts are traced, 80% of workplace or social contacts are traced, and no casual contacts are traced, and that in most cases the ability to trace 1–5 individuals per day per index case is sufficient. If smallpox is assumed to be transmitted very quickly to contacts, it may at times escape containment by ring vaccination, but could be controlled in these circumstances by mass vaccination. CONCLUSIONS: Small introductions of smallpox are likely to be easily contained by ring vaccination, provided contact tracing is feasible. Uncertainties in the nature of bioterrorist smallpox (infectiousness, vaccine efficacy) support continued planning for ring vaccination as well as mass vaccination. If initiated, ring vaccination should be conducted without delays in vaccination, should include contacts of contacts (whenever there is sufficient capacity) and should be accompanied by increased public awareness and surveillance

    Defects in ErbB-Dependent Establishment of Adult Melanocyte Stem Cells Reveal Independent Origins for Embryonic and Regeneration Melanocytes

    Get PDF
    Adult stem cells are responsible for maintaining and repairing tissues during the life of an organism. Tissue repair in humans, however, is limited compared to the regenerative capabilities of other vertebrates, such as the zebrafish (Danio rerio). An understanding of stem cell mechanisms, such as how they are established, their self-renewal properties, and their recruitment to produce new cells is therefore important for the application of regenerative medicine. We use larval melanocyte regeneration following treatment with the melanocytotoxic drug MoTP to investigate these mechanisms in Melanocyte Stem Cell (MSC) regulation. In this paper, we show that the receptor tyrosine kinase, erbb3b, is required for establishing the adult MSC responsible for regenerating the larval melanocyte population. Both the erbb3b mutant and wild-type fish treated with the ErbB inhibitor, AG1478, develop normal embryonic melanocytes but fail to regenerate melanocytes after MoTP-induced melanocyte ablation. By administering AG1478 at different time points, we show that ErbB signaling is only required for regeneration prior to MoTP treatment and before 48 hours of development, consistent with a role in establishing MSCs. We then show that overexpression of kitla, the Kit ligand, in transgenic larvae leads to recruitment of MSCs, resulting in overproliferation of melanocytes. Furthermore, kitla overexpression can rescue AG1478-blocked regeneration, suggesting that ErbB signaling is required to promote the progression and specification of the MSC from a pre–MSC state. This study provides evidence that ErbB signaling is required for the establishment of adult MSCs during embryonic development. That this requirement is not shared with the embryonic melanocytes suggests that embryonic melanocytes develop directly, without proceeding through the ErbB-dependent MSC. Moreover, the shared requirement of larval melanocyte regeneration and metamorphic melanocytes that develops at the larval-to-adult transition suggests that these post-embryonic melanocytes develop from the same adult MSC population. Lastly, that kitla overexpression can recruit the MSC to develop excess melanocytes raises the possibility that Kit signaling may be involved in MSC recruitment during regeneration

    The impact of diabetes mellitus on survival following resection and adjuvant chemotherapy for pancreatic cancer

    Get PDF
    BACKGROUND: Diabetes mellitus is frequently observed in pancreatic cancer patients and is both a risk factor and an early manifestation of the disease. METHODS: We analysed the prognostic impact of diabetes on the outcome of pancreatic cancer following resection and adjuvant chemotherapy using individual patient data from three European Study Group for Pancreatic Cancer randomised controlled trials. Analyses were carried out to assess the association between clinical characteristics and the presence of preoperative diabetes, as well as the effect of diabetic status on overall survival. RESULTS: In total, 1105 patients were included in the analysis, of whom 257 (23%) had confirmed diabetes and 848 (77%) did not. Median (95% confidence interval (CI)) unadjusted overall survival in non-diabetic patients was 22.3 (20.8–24.1) months compared with 18.8 (16.9–22.1) months for diabetic patients (P=0.24). Diabetic patients were older, had increased weight and more co-morbidities. Following adjustment, multivariable analysis demonstrated that diabetic patients had an increased risk of death (hazard ratio: 1.19 (95% CI 1.01, 1.40), P=0.034). Maximum tumour size of diabetic patients was larger at randomisation (33.6 vs 29.7 mm, P=0.026). CONCLUSIONS: Diabetes mellitus was associated with increased tumour size and reduced survival following pancreatic cancer resection and adjuvant chemotherapy

    Structural and molecular correlates of cognitive aging in the rat

    Get PDF
    Aging is associated with cognitive decline. Herein, we studied a large cohort of old age and young adult male rats and confirmed that, as a group, old  rats display poorer spatial learning and behavioral flexibility than younger adults. Surprisingly, when animals were clustered as good and bad performers, our data revealed that while in younger animals better cognitive performance was associated with longer dendritic trees and increased levels of synaptic markers in the hippocampus and prefrontal cortex, the opposite was found in the older group, in which better performance was associated with shorter dendrites and lower levels of synaptic markers. Additionally, in old, but not young individuals, worse performance correlated with increased levels of BDNF and the autophagy substrate p62, but decreased levels of the autophagy complex protein LC3. In summary, while for younger individuals "bigger is better", "smaller is better" is a more appropriate aphorism for older subjects.Portuguese Foundation for Science and Technology (FCT) with fellowships granted to: Cristina Mota (SFRH/BD/81881/2011), Susana Monteiro (SFRH/BD/69311/2010), Sofia Pereira das Neves and Sara Monteiro-Martins (PIC/IC/83213/2007); and by the European Commission within the 7th framework program, under the grant agreement: Health-F2-2010-259772 (Switchbox). In addition, this work was co-funded by the Northern Portugal Regional Operational Programme (ON.2 SR&TD Integrated Program – NORTE-07-0124-FEDER-000021), through the European Regional Development Fund (FEDER) and by national funds granted by FCT (PEst-C/SAU/LA0026/2013), and FEDER through the COMPETE (FCOMP-01-0124-FEDER-037298)

    Transplantation of mesenchymal stem cells from young donors delays aging in mice

    Get PDF
    Increasing evidence suggests that the loss of functional stem cells may be important in the aging process. Our experiments were originally aimed at testing the idea that, in the specific case of age-related osteoporosis, declining function of osteogenic precursor cells might be at least partially responsible. To test this, aging female mice were transplanted with mesenchymal stem cells from aged or young male donors. We find that transplantation of young mesenchymal stem cells significantly slows the loss of bone density and, surprisingly, prolongs the life span of old mice. These observations lend further support to the idea that age-related diminution of stem cell number or function may play a critical role in age-related loss of bone density in aging animals and may be one determinant of overall longevity
    corecore