3,964 research outputs found

    A Size of ~10 Mpc for the Ionized Bubbles at the End of Cosmic Reionization

    Full text link
    The first galaxies to appear in the universe at redshifts z>20 created ionized bubbles in the intergalactic medium of neutral hydrogen left over from the Big-Bang. It is thought that the ionized bubbles grew with time, surrounded clusters of dwarf galaxies and eventually overlapped quickly throughout the universe over a narrow redshift interval near z~6. This event signaled the end of the reionization epoch when the universe was a billion years old. Measuring the hitherto unknown size distribution of the bubbles at their final overlap phase is a focus of forthcoming observational programs aimed at highly redshifted 21cm emission from atomic hydrogen. Here we show that the combined constraints of cosmic variance and causality imply an observed bubble size at the end of the overlap epoch of ~10 physical Mpc, and a scatter in the observed redshift of overlap along different lines-of-sight of ~0.15. This scatter is consistent with observational constraints from recent spectroscopic data on the farthest known quasars. Our novel result implies that future radio experiments should be tuned to a characteristic angular scale of ~0.5 degrees and have a minimum frequency band-width of ~8 MHz for an optimal detection of 21cm flux fluctuations near the end of reionization.Comment: Accepted for publication in Nature. Press embargo until publishe

    Cosmic Hydrogen Was Significantly Neutral a Billion Years After the Big Bang

    Full text link
    The ionization fraction of cosmic hydrogen, left over from the big bang, provides crucial fossil evidence for when the first stars and quasar black holes formed in the infant universe. Spectra of the two most distant quasars known show nearly complete absorption of photons with wavelengths shorter than the Ly-alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift z~6.3, about a billion years after the big bang. Here we show that the radii of influence of ionizing radiation from these quasars imply that the surrounding IGM had a neutral hydrogen fraction of tens of percent prior to the quasar activity, much higher than previous lower limits of ~0.1%. When combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination from the WMAP data, our result suggests the existence of a second peak in the mean ionization history, potentially due to an early formation episode of the first stars.Comment: 14 Pages, 2 Figures. Accepted for publication in Nature. Press embargo until publishe

    Natural gaits of the non-pathological flat foot and high-arched foot

    Get PDF
    There has been a controversy as to whether or not the non-pathological flat foot and high-arched foot have an effect on human walking activities. The 3D foot scanning system was employed to obtain static footprints from subjects adopting a half-weight-bearing stance. Based upon their footprints, the subjects were divided into two groups: the flat-footed and the high-arched. The plantar pressure measurement system was used to measure and record the subjects' successive natural gaits. Two indices were proposed: distribution of vertical ground reaction force (VGRF) of plantar and the rate of the footprint areas. Using these two indices to compare the natural gaits of the two subject groups, we found that (1) in stance phase, there is a significant difference (p<0.01) in the distributions of VGRF of plantar; (2) in a stride cycle, there is also a significant difference (p<0.01) in the rates of the footprint areas. Our analysis suggests that when walking, the VGRF of the plantar brings greater muscle tension to the flat-footed while a smaller rate of the footprint areas brings greater stability to the high-arched.Comment: 8 pages, 4 figure

    Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders

    Get PDF
    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations

    Atrazine-Induced Aromatase Expression Is SF-1 Dependent: Implications for Endocrine Disruption in Wildlife and Reproductive Cancers in Humans

    Get PDF
    BACKGROUND: Atrazine is a potent endocrine disruptor that increases aromatase expression in some human cancer cell lines. The mechanism involves the inhibition of phosphodiesterase and subsequent elevation of cAMP. METHODS: We compared steroidogenic factor 1 (SF-1) expression in atrazine responsive and non-responsive cell lines and transfected SF-1 into nonresponsive cell lines to assess SF-1’s role in atrazine-induced aromatase. We used a luciferase reporter driven by the SF-1–dependent aromatase promoter (ArPII) to examine activation of this promoter by atrazine and the related simazine. We mutated the SF-1 binding site to confirm the role of SF-1. We also examined effects of 55 other chemicals. Finally, we examined the ability of atrazine and simazine to bind to SF-1 and enhance SF-1 binding to ArPII. RESULTS: Atrazine-responsive adrenal carcinoma cells (H295R) expressed 54 times more SF-1 than nonresponsive ovarian granulosa KGN cells. Exogenous SF-1 conveyed atrazine-responsiveness to otherwise nonresponsive KGN and NIH/3T3 cells. Atrazine induced binding of SF-1 to chromatin and mutation of the SF-1 binding site in ArPII eliminated SF-1 binding and atrazine-responsiveness in H295R cells. Out of 55 chemicals examined, only atrazine, simazine, and benzopyrene induced luciferase via ArPII. Atrazine bound directly to SF-1, showing that atrazine is a ligand for this “orphan” receptor. CONCLUSION: The current findings are consistent with atrazine’s endocrine-disrupting effects in fish, amphibians, and reptiles; the induction of mammary and prostate cancer in laboratory rodents; and correlations between atrazine and similar reproductive cancers in humans. This study highlights the importance of atrazine as a risk factor in endocrine disruption in wildlife and reproductive cancers in laboratory rodents and humans

    Albumin-based cancer therapeutics for intraperitoneal drug delivery : a review

    Get PDF
    Albumin is a remarkable carrier protein with multiple cellular receptor and ligand binding sites, which are able to bind and transport numerous endogenous and exogenous compounds. The development of albumin-bound drugs is gaining increased importance in the targeted delivery of cancer therapy. Intraperitoneal (IP) drug delivery represents an attractive strategy for the local treatment of peritoneal metastasis (PM). PM is characterized by the presence of widespread metastatic tumor nodules on the peritoneum, mostly originating from gastro-intestinal or gynaecological cancers. Albumin as a carrier for chemotherapy holds considerable promise for IP delivery in patients with PM. Data from recent (pre)clinical trials suggest that IP albumin-bound chemotherapy may result in superior efficacy in the treatment of PM compared to standard chemotherapy formulations. Here, we review the evidence on albumin-bound chemotherapy with a focus on IP administration and its efficacy in PM

    Constraint Generation Algorithm for the Minimum Connectivity Inference Problem

    Full text link
    Given a hypergraph HH, the Minimum Connectivity Inference problem asks for a graph on the same vertex set as HH with the minimum number of edges such that the subgraph induced by every hyperedge of HH is connected. This problem has received a lot of attention these recent years, both from a theoretical and practical perspective, leading to several implemented approximation, greedy and heuristic algorithms. Concerning exact algorithms, only Mixed Integer Linear Programming (MILP) formulations have been experimented, all representing connectivity constraints by the means of graph flows. In this work, we investigate the efficiency of a constraint generation algorithm, where we iteratively add cut constraints to a simple ILP until a feasible (and optimal) solution is found. It turns out that our method is faster than the previous best flow-based MILP algorithm on random generated instances, which suggests that a constraint generation approach might be also useful for other optimization problems dealing with connectivity constraints. At last, we present the results of an enumeration algorithm for the problem.Comment: 16 pages, 4 tables, 1 figur

    Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk

    Get PDF
    Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al
    corecore