55 research outputs found
Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception
Choosing an appropriate set of stimuli is essential to characterize the
response of a sensory system to a particular functional dimension, such as the
eye movement following the motion of a visual scene. Here, we describe a
framework to generate random texture movies with controlled information
content, i.e., Motion Clouds. These stimuli are defined using a generative
model that is based on controlled experimental parametrization. We show that
Motion Clouds correspond to dense mixing of localized moving gratings with
random positions. Their global envelope is similar to natural-like stimulation
with an approximate full-field translation corresponding to a retinal slip. We
describe the construction of these stimuli mathematically and propose an
open-source Python-based implementation. Examples of the use of this framework
are shown. We also propose extensions to other modalities such as color vision,
touch, and audition
Spatial Stereoresolution for Depth Corrugations May Be Set in Primary Visual Cortex
Stereo β3Dβ depth perception requires the visual system to extract binocular disparities between the two eyes' images. Several current models of this process, based on the known physiology of primary visual cortex (V1), do this by computing a piecewise-frontoparallel local cross-correlation between the left and right eye's images. The size of the βwindowβ within which detectors examine the local cross-correlation corresponds to the receptive field size of V1 neurons. This basic model has successfully captured many aspects of human depth perception. In particular, it accounts for the low human stereoresolution for sinusoidal depth corrugations, suggesting that the limit on stereoresolution may be set in primary visual cortex. An important feature of the model, reflecting a key property of V1 neurons, is that the initial disparity encoding is performed by detectors tuned to locally uniform patches of disparity. Such detectors respond better to square-wave depth corrugations, since these are locally flat, than to sinusoidal corrugations which are slanted almost everywhere. Consequently, for any given window size, current models predict better performance for square-wave disparity corrugations than for sine-wave corrugations at high amplitudes. We have recently shown that this prediction is not borne out: humans perform no better with square-wave than with sine-wave corrugations, even at high amplitudes. The failure of this prediction raised the question of whether stereoresolution may actually be set at later stages of cortical processing, perhaps involving neurons tuned to disparity slant or curvature. Here we extend the local cross-correlation model to include existing physiological and psychophysical evidence indicating that larger disparities are detected by neurons with larger receptive fields (a size/disparity correlation). We show that this simple modification succeeds in reconciling the model with human results, confirming that stereoresolution for disparity gratings may indeed be limited by the size of receptive fields in primary visual cortex
Ganglion Cell Adaptability: Does the Coupling of Horizontal Cells Play a Role?
Background: The visual system can adjust itself to different visual environments. One of the most well known examples of this is the shift in spatial tuning that occurs in retinal ganglion cells with the change from night to day vision. This shift is thought to be produced by a change in the ganglion cell receptive field surround, mediated by a decrease in the coupling of horizontal cells. Methodology/Principal Findings: To test this hypothesis, we used a transgenic mouse line, a connexin57-deficient line, in which horizontal cell coupling was abolished. Measurements, both at the ganglion cell level and the level of behavioral performance, showed no differences between wild-type retinas and retinas with decoupled horizontal cells from connexin57-deficient mice. Conclusion/Significance: This analysis showed that the coupling and uncoupling of horizontal cells does not play a dominant role in spatial tuning and its adjustability to night and day light conditions. Instead, our data suggest that anothe
- β¦