15 research outputs found

    Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: effect of the genotype, ripening stage, and growing system

    Full text link
    This is the peer reviewed version of the following article: Ribes-Moya, A.M., Adalid, A.M., Raigón, M.D., Hellín, P., Fita, A. and Rodríguez-Burruezo, A. (2020), Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: effect of the genotype, ripening stage, and growing system. J Sci Food Agric, 100: 2208-2223, which has been published in final form at https://doi.org/10.1002/jsfa.10245. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] BACKGROUND In recent years, the acreage used for organic agriculture and the demand for organic fruit and vegetables have increased considerably. Given this scenario, landraces, such as Capsicum landraces, can provide valuable germplasm. Capsicum peppers are very interesting because of their high phenolic content, and particularly their flavonoid content, which provides a high added value. Moreover, the broad genetic diversity in local varieties expands the opportunities for adaptation to organic production and for exploiting genotype x environment interactions to select peppers with the highest phenolic content. RESULTS In this work, the main flavonoids of peppers were exhaustively evaluated over 2 years in a wide collection of heirlooms, both unripe and fully ripe, under organic and conventional cultivation. The genotype and ripening stage contributed to a high degree to the variation in flavonoids. The growing system influenced this variation to a lesser extent. Luteolin and quercetin showed the highest contributions to total phenolic content (70% and > 20%, respectively) at both ripening stages, while myricetin, apigenin, and kaempferol showed lower contributrions. The average flavonoid content was higher in ripe fruits, and organic management significantly increased the accumulation of total flavonoids and luteolin. Positive correlations between flavonoids were found at both ripening stages, especially between main flavonoids luteolin and quercetin and between kaempferol and quercetin (rho > 0.7). CONCLUSION Genotype x environment interaction enabled the identification of accessions with high flavonoid content grown under organic conditions at both ripening stages, particularly total flavonoids and luteolin at the fully ripe stage. Our results reinforce the importance of a wide genetic variation and of considering different ripening stages and growing conditions for breeding high-quality peppers.This work has been funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) project RTA2014-00041-C02-02, Fondo Europeo de Desarrollo Regional (FEDER) funds. A.M. Ribes-Moya expresses her gratitude to the Universitat Politecnica de Valencia (UPV) for her scholarship FPI-UPV-2017 (PAID-01-17). The authors also thank the farmers' association Unio de Llauradors i Ramaders (LA UNI) for the arrangement and management of fields - specifically Manuel Figueroa, Rafael Hurtado, Ricard Ballester, and Antonio Munoz, and seed providers P.W. Bosland, S. Lanteri, Francois Jourdan, Santiago Larregla, and the Regulatory Boards of the PDOs and PGIs included in this work. The authors are also grateful for the support of Professor Jaime Prohens with statistical methods.Ribes Moya, AM.; Adalid-Martinez, AM.; Raigón Jiménez, MD.; Hellín, P.; Fita, A.; Rodríguez Burruezo, A. (2020). Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: effect of the genotype, ripening stage, and growing system. Journal of the Science of Food and Agriculture. 100(5):2208-2223. https://doi.org/10.1002/jsfa.10245S220822231005WillerH European organic market grew by double digits and organic area reached 13.5 million hectares in2016 [Online]. FiBL‐Media release (2018). Available:https://www.fibl.org/en/media/media-archive/media-archive18/media-release18/article/bio-in-europa-legt-weiter-zu-biomarkt-waechst-zweistellig-bioflaeche-steigt-auf-fast-14-millionen-h.html[8 August 2019]BENGTSSON, J., AHNSTRÖM, J., & WEIBULL, A.-C. (2005). The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology, 42(2), 261-269. doi:10.1111/j.1365-2664.2005.01005.xHunter, D., Foster, M., McArthur, J. O., Ojha, R., Petocz, P., & Samman, S. (2011). Evaluation of the Micronutrient Composition of Plant Foods Produced by Organic and Conventional Agricultural Methods. Critical Reviews in Food Science and Nutrition, 51(6), 571-582. doi:10.1080/10408391003721701Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978FAOSTAT Data[Online]. FAOSTAT (2019). Available:http://www.fao.org/faostat/en/#data/QC[17 January 2019]Denominaciones de Origen e Indicaciones Geográficas Protegidas. [Online]. MAPAMA. (2019). Available:https://www.mapa.gob.es/es/alimentacion/temas/calidad-agroalimentaria/calidad-diferenciada/dop/default.aspx[6 February 2019]Hill, T. A., Ashrafi, H., Reyes-Chin-Wo, S., Yao, J., Stoffel, K., Truco, M.-J., … Van Deynze, A. (2013). Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip. PLoS ONE, 8(2), e56200. doi:10.1371/journal.pone.0056200Kumar, S., Kumar, R., & Singh, J. (2006). Cayenne/American pepper. Handbook of Herbs and Spices, 299-312. doi:10.1533/9781845691717.3.299Bosland, P. W., & Votava, E. J. (Eds.). (2012). Peppers: vegetable and spice capsicums. doi:10.1079/9781845938253.0000Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., & Brighenti, F. (2003). Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different In Vitro Assays. The Journal of Nutrition, 133(9), 2812-2819. doi:10.1093/jn/133.9.2812Zimmer, A. R., Leonardi, B., Miron, D., Schapoval, E., Oliveira, J. R. de, & Gosmann, G. (2012). Antioxidant and anti-inflammatory properties of Capsicum baccatum: From traditional use to scientific approach. Journal of Ethnopharmacology, 139(1), 228-233. doi:10.1016/j.jep.2011.11.005Morales-Soto, A., García-Salas, P., Rodríguez-Pérez, C., Jiménez-Sánchez, C., Cádiz-Gurrea, M. de la L., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2014). Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Research International, 58, 35-46. doi:10.1016/j.foodres.2014.01.050BHATTACHARYA, A., SOOD, P., & CITOVSKY, V. (2010). The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Molecular Plant Pathology, no-no. doi:10.1111/j.1364-3703.2010.00625.xBlum, U., Shafer, S. R., & Lehman, M. E. (1999). Evidence for Inhibitory Allelopathic Interactions Involving Phenolic Acids in Field Soils: Concepts vs. an Experimental Model. Critical Reviews in Plant Sciences, 18(5), 673-693. doi:10.1080/07352689991309441Alasalvar, C., Grigor, J. M., Zhang, D., Quantick, P. C., & Shahidi, F. (2001). Comparison of Volatiles, Phenolics, Sugars, Antioxidant Vitamins, and Sensory Quality of Different Colored Carrot Varieties. Journal of Agricultural and Food Chemistry, 49(3), 1410-1416. doi:10.1021/jf000595hRomero, N., Saavedra, J., Tapia, F., Sepúlveda, B., & Aparicio, R. (2015). Influence of agroclimatic parameters on phenolic and volatile compounds of Chilean virgin olive oils and characterization based on geographical origin, cultivar and ripening stage. Journal of the Science of Food and Agriculture, 96(2), 583-592. doi:10.1002/jsfa.7127Ferrer-Gallego, R., Hernández-Hierro, J. M., Rivas-Gonzalo, J. C., & Escribano-Bailón, M. T. (2012). Influence of climatic conditions on the phenolic composition of Vitis vinifera L. cv. Graciano. Analytica Chimica Acta, 732, 73-77. doi:10.1016/j.aca.2011.12.072Tomás-Barberán, F. A., & Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853-876. doi:10.1002/jsfa.885Sun, J., Chu, Y.-F., Wu, X., & Liu, R. H. (2002). Antioxidant and Antiproliferative Activities of Common Fruits. Journal of Agricultural and Food Chemistry, 50(25), 7449-7454. doi:10.1021/jf0207530Sala, A., Recio, M. del C., Giner, R. M., Máñez, S., Tournier, H., Schinella, G., & Ríos, J.-L. (2002). Anti-inflammatory and antioxidant properties of Helichrysum italicum. Journal of Pharmacy and Pharmacology, 54(3), 365-371. doi:10.1211/0022357021778600Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157-2184. doi:10.1016/j.lfs.2003.09.047WOJDYLO, A., OSZMIANSKI, J., & CZEMERYS, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940-949. doi:10.1016/j.foodchem.2007.04.038Bae, H., Jayaprakasha, G. K., Jifon, J., & Patil, B. S. (2012). Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chemistry, 130(3), 751-758. doi:10.1016/j.foodchem.2011.07.041Jeong, W. Y., Jin, J. S., Cho, Y. A., Lee, J. H., Park, S., Jeong, S. W., … Shin, S. C. (2011). Determination of polyphenols in three Capsicum annuum L. (bell pepper) varieties using high-performance liquid chromatography-tandem mass spectrometry: Their contribution to overall antioxidant and anticancer activity. Journal of Separation Science, 34(21), 2967-2974. doi:10.1002/jssc.201100524Materska, M. (2014). Bioactive phenolics of fresh and freeze-dried sweet and semi-spicy pepper fruits (Capsicum annuum L.). Journal of Functional Foods, 7, 269-277. doi:10.1016/j.jff.2014.02.002Plazas, M., Prohens, J., Cuñat, A., Vilanova, S., Gramazio, P., Herraiz, F., & Andújar, I. (2014). Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants. International Journal of Molecular Sciences, 15(10), 17221-17241. doi:10.3390/ijms151017221Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180-185. doi:10.1002/wics.147Ribes-Moya, A. M., Raigón, M. D., Moreno-Peris, E., Fita, A., & Rodríguez-Burruezo, A. (2018). Response to organic cultivation of heirloom Capsicum peppers: Variation in the level of bioactive compounds and effect of ripening. PLOS ONE, 13(11), e0207888. doi:10.1371/journal.pone.0207888Rodríguez-Burruezo, A., Prohens, J., & Nuez, F. (2002). Genetic Analysis of Quantitative Traits in Pepino (Solanum muricatum) in Two Growing Seasons. Journal of the American Society for Horticultural Science, 127(2), 271-278. doi:10.21273/jashs.127.2.271Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Bhandari, S. R., Jung, B.-D., Baek, H.-Y., & Lee, Y.-S. (2013). Ripening-dependent Changes in Phytonutrients and Antioxidant Activity of Red Pepper (Capsicum annuum L.) Fruits Cultivated under Open-field Conditions. HortScience, 48(10), 1275-1282. doi:10.21273/hortsci.48.10.1275Howard, L. R., Talcott, S. T., Brenes, C. H., & Villalon, B. (2000). Changes in Phytochemical and Antioxidant Activity of Selected Pepper Cultivars (Capsicum Species) As Influenced by Maturity. Journal of Agricultural and Food Chemistry, 48(5), 1713-1720. doi:10.1021/jf990916tBae, H., Jayaprakasha, G. K., Crosby, K., Yoo, K. S., Leskovar, D. I., Jifon, J., & Patil, B. S. (2014). Ascorbic acid, capsaicinoid, and flavonoid aglycone concentrations as a function of fruit maturity stage in greenhouse-grown peppers. Journal of Food Composition and Analysis, 33(2), 195-202. doi:10.1016/j.jfca.2013.11.009Ghasemnezhad, M., Sherafati, M., & Payvast, G. A. (2011). Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. Journal of Functional Foods, 3(1), 44-49. doi:10.1016/j.jff.2011.02.002Hallmann, E., & Rembiałkowska, E. (2012). Characterisation of antioxidant compounds in sweet bell pepper (Capsicum annuum L.) under organic and conventional growing systems. Journal of the Science of Food and Agriculture, 92(12), 2409-2415. doi:10.1002/jsfa.5624Slimestad, R., & Verheul, M. (2009). Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. Journal of the Science of Food and Agriculture, 89(8), 1255-1270. doi:10.1002/jsfa.3605NAVARRO, J., FLORES, P., GARRIDO, C., & MARTINEZ, V. (2006). Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry, 96(1), 66-73. doi:10.1016/j.foodchem.2005.01.057Martí, M. C., Camejo, D., Vallejo, F., Romojaro, F., Bacarizo, S., Palma, J. M., … Jiménez, A. (2011). Influence of Fruit Ripening Stage and Harvest Period on the Antioxidant Content of Sweet Pepper Cultivars. Plant Foods for Human Nutrition, 66(4), 416-423. doi:10.1007/s11130-011-0249-xLEE, Y., HOWARD, L. ., & VILLALÓN, B. (1995). Flavonoids and Antioxidant Activity of Fresh Pepper (Capsicum annuum) Cultivars. Journal of Food Science, 60(3), 473-476. doi:10.1111/j.1365-2621.1995.tb09806.xSerrano, M., Zapata, P. J., Castillo, S., Guillén, F., Martínez-Romero, D., & Valero, D. (2010). Antioxidant and nutritive constituents during sweet pepper development and ripening are enhanced by nitrophenolate treatments. Food Chemistry, 118(3), 497-503. doi:10.1016/j.foodchem.2009.05.006Pérez-López, A. J., del Amor, F. M., Serrano-Martínez, A., Fortea, M. I., & Núñez-Delicado, E. (2007). Influence of agricultural practices on the quality of sweet pepper fruits as affected by the maturity stage. Journal of the Science of Food and Agriculture, 87(11), 2075-2080. doi:10.1002/jsfa.2966Kim, J. K., Lee, S. Y., Chu, S. M., Lim, S. H., Suh, S.-C., Lee, Y.-T., … Ha, S.-H. (2010). Variation and Correlation Analysis of Flavonoids and Carotenoids in Korean Pigmented Rice (Oryza sativa L.) Cultivars. Journal of Agricultural and Food Chemistry, 58(24), 12804-12809. doi:10.1021/jf103277gMoriguchi, T., Kita, M., Tomono, Y., Endo-Inagaki, T., & Omura, M. (2001). Gene expression in flavonoid biosynthesis: Correlation with flavonoid accumulation in developing citrus fruit. Physiologia Plantarum, 111(1), 66-74. doi:10.1034/j.1399-3054.2001.1110109.

    Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study is aimed at identifying potential candidate genes as prognostic markers in human oral tongue squamous cell carcinoma (SCC) by large scale gene expression profiling.</p> <p>Methods</p> <p>The gene expression profile of patients (n=37) with oral tongue SCC were analyzed using Affymetrix HG_U95Av2 high-density oligonucleotide arrays. Patients (n=20) from which there were available tumor and matched normal mucosa were grouped into stage (early vs. late) and nodal disease (node positive vs. node negative) subgroups and genes differentially expressed in tumor vs. normal and between the subgroups were identified. Three genes, <it>GLUT3</it>, <it>HSAL2</it>, and <it>PACE4</it>, were selected for their potential biological significance in a larger cohort of 49 patients via quantitative real-time RT-PCR.</p> <p>Results</p> <p>Hierarchical clustering analyses failed to show significant segregation of patients. In patients (n=20) with available tumor and matched normal mucosa, 77 genes were found to be differentially expressed (P< 0.05) in the tongue tumor samples compared to their matched normal controls. Among the 45 over-expressed genes, <it>MMP-1</it> encoding interstitial collagenase showed the highest level of increase (average: 34.18 folds). Using the criterion of two-fold or greater as overexpression, 30.6%, 24.5% and 26.5% of patients showed high levels of <it>GLUT3</it>, <it>HSAL2</it> and <it>PACE4</it>, respectively. Univariate analyses demonstrated that <it>GLUT3</it> over-expression correlated with depth of invasion (P<0.0001), tumor size (P=0.024), pathological stage (P=0.009) and recurrence (P=0.038). <it>HSAL2</it> was positively associated with depth of invasion (P=0.015) and advanced T stage (P=0.047). In survival studies, only <it>GLUT3</it> showed a prognostic value with disease-free (P=0.049), relapse-free (P=0.002) and overall survival (P=0.003). <it>PACE4</it> mRNA expression failed to show correlation with any of the relevant parameters. </p> <p>Conclusion</p> <p>The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by real-time RT-PCR offers a powerful strategy for identification of novel targets for prognostication and treatment of oral tongue carcinoma.</p

    Anatomical study of the female reproductive system and bacteriome of Diaphorina citri Kuwayama, (Insecta: Hemiptera, Liviidae) using micro-computed tomography

    Get PDF
    Huanglongbing (HLB) (citrus greening disease) is one of the most serious bacterial diseases of citrus. It is caused by (1) Candidatus Liberibacter africanus, transmitted by Trioza erytreae and (2) C.L. asiaticus and C.L. americanus, transmitted by Diaphorina citri. As part of a multidisciplinary project on D. citri (www.citrusgreening.org), we made a detailed study, using micro-computed tomography, of the female abdominal terminalia, reproductive system (ovaries, accessory glands, spermatheca, colleterial (= cement) gland, connecting ducts, and ovipositor) and bacteriome, which we present here. New terms and structures are introduced and described, particularly concerning the spermatheca, ovipositor and bacteriome. The quality of images and bacteriome reconstructions are comparable, or clearer, than those previously published using a synchrotron or fuorescence in situ hybridisation (FISH). This study: reviews knowledge of the female reproductive system and bacteriome organ in D. citri; represents the frst detailed morphological study of D. citri to use micro-CT; and extensively revises existing morphological information relevant to psylloids, hemipterans and insects in general. High quality images and supplementary videos represent a signifcant advance in knowledge of psylloid anatomy and are useful tools for future research and as educational aids.Kansas State University (KSU) S15192.01University of Granada, USDA-NIFA S15192.01 2014-70016-2302
    corecore