10 research outputs found

    A multicentre double-blinded randomized controlled trial on the efficacy of laser-assisted hatching in patients with repeated implantation failure undergoing IVF or ICSI

    Get PDF
    STUDY QUESTION: Does assisted hatching increase the cumulative live birth rate in subfertile couples with repeated implantation failure? SUMMARY ANSWER: This study showed no evidence of effect for assisted hatching as an add-on in subfertile couples with repeated implantation failure. WHAT IS KNOWN ALREADY: The efficacy of assisted hatching, with regard to the live birth rate has not been convincingly demonstrated in randomized trials nor meta-analyses. It is suggested though that especially poor prognosis women, e.g. women with repeated implantation failure, might benefit most from assisted hatching. STUDY DESIGN, SIZE, DURATION: The study was designed as a double-blinded, multicentre randomized controlled superiority trial. In order to demonstrate a statistically significant absolute increase in live birth rate of 10% after assisted hatching, 294 participants needed to be included per treatment arm, being a total of 588 subfertile couples. Participants were included and randomized from November 2012 until November 2017, 297 were allocated to the assisted hatching arm of the study and 295 to the control arm. Block randomization in blocks of 20 participants was applied and randomization was concealed from participants, treating physicians, and laboratory staff involved in the embryo transfer procedure. Ovarian hyperstimulation, oocyte retrieval, laboratory procedures, embryo selection for transfer and cryopreservation, the transfer itself, and luteal support were performed according to local protocols and were identical in both the intervention and control arm of the study with the exception of the assisted hatching procedure which was only performed in the intervention group. The laboratory staff performing the assisted hatching procedure was not involved in the embryo transfer itself. PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants were eligible for inclusion in the study after having had either at least two consecutive fresh IVF or ICSI embryo transfers, including the transfer of frozen and thawed embryos originating from those fresh cycles, and which did not result in a pregnancy or as having had at least one fresh IVF or ICSI transfer and at least two frozen embryo transfers with embryos originating from that fresh cycle which did not result in a pregnancy. The study was performed at the laboratory sites of three tertiary referral hospitals and two university medical centres in the Netherlands. MAIN RESULTS AND THE ROLE OF CHANCE: The cumulative live birth rate per started cycle, including the transfer of fresh and subsequent frozen/thawed embryos if applicable, resulted in 77 live births in the assisted hatching group (n = 297, 25.9%) and 68 live births in the control group (n = 295, 23.1%). This proved to be statistically not significantly different (relative risk: 1.125, 95% CI: 0.847 to 1.494, P = 0.416). LIMITATIONS, REASONS FOR CAUTION: There was a small cohort of subfertile couples that after not achieving an ongoing pregnancy, still had cryopreserved embryos in storage at the endpoint of the trial, i.e. 1 year after the last randomization. It cannot be excluded that the future transfer of these frozen/thawed embryos increases the cumulative live birth rate in either or both study arms. Next, at the start of this study, there was no international consensus on the definition of repeated implantation failure. Therefore, it cannot be excluded that assisted hatching might be effective in higher order repeated implantation failures. WIDER IMPLICATIONS OF THE FINDINGS: This study demonstrated no evidence of a statistically significant effect for assisted hatching by increasing live birth rates in subfertile couples with repeated implantation failure, i.e. the couples which, based on meta-analyses, are suggested to benefit most from assisted hatching. It is therefore suggested that assisted hatching should only be offered if information on the absence of evidence of effect is provided, at no extra costs and preferably only in the setting of a clinical trial taking cost-effectiveness into account.None. TRIAL REGISTRATION NUMBER: Netherlands Trial Register (NTR 3387, NL 3235, https://www.clinicaltrialregister.nl/nl/trial/26138). TRIAL REGISTRATION DATE: 6 April 2012. DATE OF FIRST PATIENT’S ENROLMENT: 28 November 2012.</p

    Risk of cancer in children and young adults conceived by assisted reproductive technology

    Get PDF
    STUDY QUESTION: Do children conceived by ART have an increased risk of cancer? SUMMARY ANSWER: Overall, ART-conceived children do not appear to have an increased risk of cancer. WHAT IS KNOWN ALREADY: Despite the increasing use of ART, i.e. IVF or ICSI worldwide, information about possible long-term health risks for children conceived by these techniques is scarce. STUDY DESIGN, SIZE, DURATION: A nationwide historical cohort study with prospective follow-up (median 21 years), including all live-born offspring from women treated with subfertility treatments between 1980 and 2001. PARTICIPANTS/MATERIALS, SETTING, METHODS: All offspring of a nationwide cohort of subfertile women (OMEGA study) treated in one of the 12 Dutch IVF clinics or two fertility clinics. Of 47 690 live-born children, 24 269 were ART-conceived, 13 761 naturally conceived and 9660 were conceived naturally or through fertility drugs, but not by ART. Information on the conception method of each child and potential confounders were collected through the mothers’ questionnaires and medical records. Cancer incidence was ascertained through linkage with The Netherlands Cancer Registry from 1 January 1989 until 1 November 2016. Cancer risk in ART-conceived children was compared with risks in naturally conceived children from subfertile women (hazard ratios [HRs]) and with the general population (standardized incidence ratios [SIRs]). MAIN RESULTS AND THE ROLE OF CHANCE: The median follow-up was 21 years (interquartile range (IQR): 17–25) and was shorter in ART-conceived children (20 years, IQR: 17–23) compared with naturally conceived children (24 years, IQR: 20–30). In total, 231 cancers were observed. Overall cancer risk was not increased in ART-conceived children, neither compared with naturally conceived children from subfertile women (HR: 1.00, 95% CI 0.72–1.38) nor compared with the general population (SIR = 1.11, 95% CI: 0.90–1.36). From 18 years of age onwards, the HR of cancer in ART-conceived versus naturally conceived individuals was 1.25 (95% CI: 0.73–2.13). Slightly but non-significantly increased risks were observed in children conceived by ICSI or cryopreservation (HR = 1.52, 95% CI: 0.81–2.85; 1.80, 95% CI: 0.65–4.95, respectively). Risks of lymphoblastic leukemia (HR = 2.44, 95% CI: 0.81–7.37) and melanoma (HR = 1.86, 95% CI: 0

    Prospective assessment of Y-chromosome microdeletions and reproductive outcomes among infertile couples of Japanese and African origin

    Get PDF
    BACKGROUND: To compare the frequency of Y-chromosome microdeletions in Japanese and African azoospermic and oligozoospermic men and describe embryo characteristics and reproductive outcome following in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI). METHODS: Our study was performed prospectively at two centers, a private IVF clinic and a university hospital. Japanese and African (Tanzanian) men with nonobstructive azoospermia (NOA) and oligozoospermia (concentration < 5 × 10(6 )/ml) were evaluated for Y-chromosome microdeletions (n = 162). Of the 47 men with NOA, 26 were Japanese and 21 were Africans. Of the 115 men with oligozoospermia, 87 were Japanese and 28 were Africans. Reproductive outcomes of patients with Y-chromosome microdeletions were then compared with those of 19 IVF+ICSI cycles performed on couples with Y-chromosome intact males/tubal factor infertility which served as a control group. RESULTS: Seven azoospermic and oligozoospermic patients had Y-chromosome deletions; the total number of deletions in the AZFc region was five. There was only one deletion in the AZFa region and one complete deletion involving all three regions (AZFa, b, and c) within AZF. In our study population, microdeletion frequency among Japanese men was 6.2% (95% CI, 4.25% – 14.45%), whereas no deletions were identified in the African group (95% CI, 0.0% – 7.27%). The difference between the two groups was not statistically significant, however. Embryos derived from ICSI utilizing sperm with Y-chromosome microdeletion showed reduced rates of fertilization, blastocyst development, implantation, and pregnancy compared to the Y-chromosome intact group, although these observed differences were not statistically significant. CONCLUSION: The observed frequency of Y-chromosome microdeletion was 6.2% among Japanese azoospermic and oligozoospermic males; no microdeletions were identified among our African study patients. In this population of couples undergoing IVF+ICSI, there was no statistically significant difference in embryo characteristics or pregnancy outcome between patients with Y-chromosome microdeletion and those with an intact Y-chromosome

    Risk of cancer in children and young adults conceived by assisted reproductive technology

    Get PDF
    STUDY QUESTION: Do children conceived by ART have an increased risk of cancer? SUMMARY ANSWER: Overall, ART-conceived children do not appear to have an increased risk of cancer. WHAT IS KNOWN ALREADY: Despite the increasing use of ART, i.e. IVF or ICSI worldwide, information about possible long-term health risks for children conceived by these techniques is scarce. STUDY DESIGN, SIZE, DURATION: A nationwide historical cohort study with prospective follow-up (median 21 years), including all live-born offspring from women treated with subfertility treatments between 1980 and 2001. PARTICIPANTS/MATERIALS, SETTING, METHODS: All offspring of a nationwide cohort of subfertile women (OMEGA study) treated in one of the 12 Dutch IVF clinics or two fertility clinics. Of 47 690 live-born children, 24 269 were ART-conceived, 13 761 naturally conceived and 9660 were conceived naturally or through fertility drugs, but not by ART. Information on the conception method of each child and potential confounders were collected through the mothers’ questionnaires and medical records. Cancer incidence was ascertained through linkage with The Netherlands Cancer Registry from 1 January 1989 until 1 November 2016. Cancer risk in ART-conceived children was compared with risks in naturally conceived children from subfertile women (hazard ratios [HRs]) and with the general population (standardized incidence ratios [SIRs]). MAIN RESULTS AND THE ROLE OF CHANCE: The median follow-up was 21 years (interquartile range (IQR): 17–25) and was shorter in ART-conceived children (20 years, IQR: 17–23) compared with naturally conceived children (24 years, IQR: 20–30). In total, 231 cancers were observed. Overall cancer risk was not increased in ART-conceived children, neither compared with naturally conceived children from subfertile women (HR: 1.00, 95% CI 0.72–1.38) nor compared with the general population (SIR = 1.11, 95% CI: 0.90–1.36). From 18 years of age onwards, the HR of cancer in ART-conceived versus naturally conceived individuals was 1.25 (95% CI: 0.73–2.13). Slightly but non-significantly increased risks were observed in children conceived by ICSI or cryopreservation (HR = 1.52, 95% CI: 0.81–2.85; 1.80, 95% CI: 0.65–4.95, respectively). Risks of lymphoblastic leukemia (HR = 2.44, 95% CI: 0.81–7.37) and melanoma (HR = 1.86, 95% CI: 0
    corecore