31 research outputs found

    Organophosphate Pesticide Exposure and Neurodevelopment in Young Mexican-American Children

    Get PDF
    BACKGROUND: Organophosphate (OP) pesticides are widely used in agriculture and homes. Animal studies suggest that even moderate doses are neurodevelopmental toxicants, but there are few studies in humans. OBJECTIVES: We investigated the relationship of prenatal and child OP urinary metabolite levels with children’s neurodevelopment. METHODS: Participating children were from a longitudinal birth cohort of primarily Latino farm-worker families in California. We measured six nonspecific dialkylphosphate (DAP) metabolites in maternal and child urine as well as metabolites specific to malathion (MDA) and chlorpyrifos (TCPy) in maternal urine. We examined their association with children’s performance at 6 (n = 396), 12 (n = 395), and 24 (n = 372) months of age on the Bayley Scales of Infant Development [Mental Development (MDI) and Psychomotor Development (PDI) Indices] and mother’s report on the Child Behavior Checklist (CBCL) (n = 356). RESULTS: Generally, pregnancy DAP levels were negatively associated with MDI, but child measures were positively associated. At 24 months of age, these associations reached statistical significance [per 10-fold increase in prenatal DAPs: ÎČ = −3.5 points; 95% confidence interval (CI), −6.6 to −0.5; child DAPs: ÎČ = 2.4 points; 95% CI, 0.5 to 4.2]. Neither prenatal nor child DAPs were associated with PDI or CBCL attention problems, but both prenatal and postnatal DAPs were associated with risk of pervasive developmental disorder [per 10-fold increase in prenatal DAPs: odds ratio (OR) = 2.3, p = 0.05; child DAPs OR = 1.7, p = 0.04]. MDA and TCPy were not associated with any outcome. CONCLUSIONS: We report adverse associations of prenatal DAPs with mental development and pervasive developmental problems at 24 months of age. Results should be interpreted with caution given the observed positive relationship with postnatal DAPs

    Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts

    Get PDF
    OBJECTIVE: Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented-to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. DATA SOURCES AND EXTRACTION: We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. DATA SYNTHESIS: A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. CONCLUSIONS: MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure

    Role of lipid apheresis in changing times

    Get PDF
    During the last decades, LDL-apheresis was established as an extracorporeal treatment option for patients with severe heterozygous or homozygous familial hypercholesterolemia (FH) that is resistant to conventional treatment strategies such as diet, drugs, and changes in lifestyle. Nearly half a century ago, the first LDL-apheresis treatment was performed by plasma exchange in a child with homozygous FH

    Pediatric emergencies: Newsletter 8

    No full text

    Intravenous organophosphate injection: An unusual way of intoxication

    No full text
    Organophosphate insecticides strongly inhibit both true cholinesterase and pseudocholinesterase activities. In this report, we have reported a patient who injected himself a strong organophosphate compound, methamidophos, and showed the typical clinical picture of organophosphate intoxication. As far as we know, this is the first case of intoxication by intravenous (i.v.) injection. With the appropriate therapy, his symptoms disappeared in a few days
    corecore