8,940 research outputs found

    Dynamical evolution of star forming regions - II. Basic kinematics

    Get PDF
    We follow the dynamical evolution of young star-forming regions with a wide range of initial conditions and examine how the radial velocity dispersion, σ\sigma, evolves over time. We compare this velocity dispersion to the theoretically expected value for the velocity dispersion if a region were in virial equilibrium, σvir\sigma_{\rm vir} and thus assess the virial state (σ/σvir\sigma / \sigma_{\rm vir}) of these systems. We find that in regions that are initially subvirial, or in global virial equilibrium but subvirial on local scales, the system relaxes to virial equilibrium within several million years, or roughly 25 - 50 crossing times, according to the measured virial ratio. However, the measured velocity dispersion, σ\sigma, appears to be a bad diagnostic of the current virial state of these systems as it suggests that they become supervirial when compared to the velocity dispersion estimated from the virial mass, σvir\sigma_{\rm vir}. We suggest that this discrepancy is caused by the fact that the regions are never fully relaxed, and that the early non-equilibrium evolution is imprinted in the one-dimensional velocity dispersion at these early epochs. If measured early enough (<<2 Myr in our simulations, or \sim20 crossing times), the velocity dispersion can be used to determine whether a region was highly supervirial at birth without the risk of degeneracy. We show that combining σ\sigma, or the ratio of σ\sigma to the interquartile range (IQR) dispersion, with measures of spatial structure, places stronger constraints on the dynamical history of a region than using the velocity dispersion in isolation

    Go for broke: The role of somatic states when asked to lose in the Iowa Gambling Task

    Get PDF
    © 2016 The Author(s) The Somatic Marker Hypothesis (SMH) posits that somatic states develop and guide advantageous decision making by “marking” disadvantageous options (i.e., arousal increases when poor options are considered). This assumption was tested using the standard Iowa Gambling Task (IGT) in which participants win/lose money by selecting among four decks of cards, and an alternative version, identical in both structure and payoffs, but with the aim changed to lose as much money as possible. This “lose” version of the IGT reverses which decks are advantageous/disadvantageous; and so reverses which decks should be marked by somatic responses – which we assessed via skin conductance (SC). Participants learned to pick advantageously in the original (Win) IGT and in the (new) Lose IGT. Using multilevel regression, some variability in anticipatory SC across blocks was found but no consistent effect of anticipatory SC on disadvantageous deck selections. Thus, while we successfully developed a new way to test the central claims of the SMH, we did not find consistent support for the SMH

    The dynamics of the γ Vel cluster and nearby Vela OB2 association

    Get PDF
    The kinematics of low-mass stars in nearby OB associations can provide clues about their origins and evolution. Combining the precise positions, proper motions, and parallaxes given in the second Gaia Data Release with radial-velocity measurements obtained with the Hermes spectrograph at the Anglo-Australian Telescope, we have an opportunity to study in detail the kinematics of low-mass stars belonging to the nearby γ Vel cluster and the Vela OB2 association it is projected against. The presence of lithium is used to confirm the youth of our targets. We separate our sample into the cluster and association populations based on the Gaia-ESO Survey membership probabilities their parallaxes, and kinematics. We find strong evidence for expansion in the OB association population with at least 4σ significance along all three axes, though the expansion is notably anisotropic. We discuss these results in the context of cluster and association dispersal theories

    Trends in the ability of socioeconomic position to predict individual body mass index: an analysis of repeated cross-sectional data, 1991–2019

    Get PDF
    Background: The widening of group-level socioeconomic differences in body mass index (BMI) has received considerable research attention. However, the predictive power of socioeconomic position (SEP) indicators at the individual level remains uncertain, as does the potential temporal variation in their predictive value. Examining this is important given the increasing incorporation of SEP indicators into predictive algorithms and calls to reduce social inequality to tackle the obesity epidemic. We thus investigated SEP differences in BMI over three decades of the obesity epidemic in England, comparing population-wide (SEP group differences in mean BMI) and individual-level (out-of-sample prediction of individuals’ BMI) approaches to understanding social inequalities. Methods: We used repeated cross-sectional data from the Health Survey for England, 1991–2019. BMI (kg/m2) was measured objectively, and SEP was measured via educational attainment, occupational class, and neighbourhood index of deprivation. We ran random forest models for each survey year and measure of SEP adjusting for age and sex. Results: The mean and variance of BMI increased within each SEP group over the study period. Mean differences in BMI by SEP group also increased: differences between lowest and highest education groups were 1.0 kg/m2 (0.4, 1.6) in 1991 and 1.3 kg/m2 (0.7, 1.8) in 2019. At the individual level, the predictive capacity of SEP was low, though increased in later years: including education in models improved predictive accuracy (mean absolute error) by 0.14% (− 0.9, 1.08) in 1991 and 1.05% (0.18, 1.82) in 2019. Similar patterns were obtained for occupational class and neighbourhood deprivation and when analysing obesity as an outcome. Conclusions: SEP has become increasingly important at the population (group difference) and individual (prediction) levels. However, predictive ability remains low, suggesting limited utility of including SEP in prediction algorithms. Assuming links are causal, abolishing SEP differences in BMI could have a large effect on population health but would neither reverse the obesity epidemic nor reduce much of the variation in BMI

    Statistical comparison of InSAR tropospheric correction techniques

    Get PDF
    Correcting for tropospheric delays is one of the largest challenges facing the interferometric synthetic aperture radar (InSAR) community. Spatial and temporal variations in temperature, pressure, and relative humidity create tropospheric signals in InSAR data, masking smaller surface displacements due to tectonic or volcanic deformation. Correction methods using weather model data, GNSS and/or spectrometer data have been applied in the past, but are often limited by the spatial and temporal resolution of the auxiliary data. Alternatively a correction can be estimated from the interferometric phase by assuming a linear or a power-law relationship between the phase and topography. Typically the challenge lies in separating deformation from tropospheric phase signals. In this study we performed a statistical comparison of the state-of-the-art tropospheric corrections estimated from the MERIS and MODIS spectrometers, a low and high spatial-resolution weather model (ERA-I and WRF), and both the conventional linear and new power-law empirical methods. Our test-regions include Southern Mexico, Italy, and El Hierro. We find spectrometers give the largest reduction in tropospheric signal, but are limited to cloud-free and daylight acquisitions. We find a ~ 10–20% RMSE increase with increasing cloud cover consistent across methods. None of the other tropospheric correction methods consistently reduced tropospheric signals over different regions and times. We have released a new software package called TRAIN (Toolbox for Reducing Atmospheric InSAR Noise), which includes all these state-of-the-art correction methods. We recommend future developments should aim towards combining the different correction methods in an optimal manner

    Primary nodal anthracosis identified by EBUS-TBNA as a cause of FDG PET/CT positive mediastinal lymphadenopathy.

    No full text
    Isolated mediastinal lymphadenopathy can result from a number of potentially serious aetiologies. Traditionally those presenting with mediastinal lymphadenopathy would undergo mediastinoscopy to elucidate a final diagnosis or receive empirical treatment. There is now increased utilization of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA), in this setting. Five cases of mediastinal lymphadenopathy are presented here in which lymph node anthracosis was identified as the primary diagnosis using EBUS-TBNA. They were female, non-smokers presenting with non-specific symptoms, who retrospectively reported cooking over wood fires. Four were from South Asia. Three were investigated by F-18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) scanning and increased signal was identified in the anthracotic nodes sampled. With expansion of PET/CT and EBUS-TBNA services it is likely that primary nodal anthracosis will be encountered more frequently and should be considered in the differential diagnosis of those with PET/CT positive lymphadenopathy. It may mimic pathologies including tuberculosis and malignancy, thus accurate sampling and follow-up are essential

    Novel Environmental Features for Robust Multisensor Navigation

    Get PDF
    Many navigation techniques have now become so reliant on GNSS that there is no back up when there is limited or no signal reception. If there is interference, intentional or otherwise, with the signal, navigation could be lost or become misleading [1]. Other navigation techniques harness different technologies such as Wi-Fi [2], eLoran and inertial navigation. However, each of these techniques has its own limitations, such as coverage, degradation in urban areas or solution drift [3]. Therefore there is a need for new navigation and positioning techniques that may be integrated with GNSS to increase the reliability of the system as a whole. This paper presents the results of a feasibility study to identify a set of novel environmental features that could be used for navigation in the temporary absence of GNSS or degradation of the signal. By measuring these features during times of GNSS availability a map can be produced. This can be referred to during times of limited reception, a principle already used for some Wi-Fi positioning techniques [2]. Therefore a “measurable” can be defined as a feature either man-made or natural that is spatially distinct and has limited temporal variation. Possibilities considered include magnetic anomalies [4], light intensity and road signs. Firstly, a brainstorming exercise and a literature study were conducted to generate a list of possible environmental features that was assessed for the viability of each candidate. The features were ranked according to three criteria: practicality, precision and coverage. The definition of practicality for each measurable was that a suitable detector must be installable on a road vehicle, particularly an emergency vehicle, at a reasonable cost with minimal alterations to the vehicle. Precision was defined in terms of the spatial variation of the environmental feature and thus the accuracy with which position information might be derived from it. Coverage was assessed in terms of the availability of the feature over a range of different environments. Continuous coverage is not required because the new measurables may be used in combination and integrated with dead reckoning techniques, such as odometry and inertial navigation [3]. The outcome of the viability study was used to determine which features are to be experimentally tested. Magnetic anomalies, road texture and a dozen other environmental features were found to be worth investigation. Features which were discounted include wind speed and pulsars [5]. The initial experiment was carried out on foot in Central London. The same tests were repeated on two separate days, with a closed loop circuit walked three times on each occasion. This experiment used an Inertial Measurement Unit (IMU), comprising accelerometer and gyro triads, together with a barometer, three-axis magnetometer and GNSS receiver. The experiment was also recorded using a camcorder from the point of view of a pedestrian, enabling visual and audio features of the environment to be assessed. Magnetic anomalies were found to be a promising source of position information. Peaks in the magnetometer data were observed on all rounds at approximately the same positions. There were also similarities seen in the temperature profiles after correcting for the temporal variation of the background temperature. Another potential source of position information was found to be text-based signs. It is relatively simple to extract text from camera images and it is easily stored in a feature database. However, methods of dealing with identically-worded signs in close proximity will need to be developed. Sound levels were analysed in 10s intervals for the mean, minimum and maximum sound volume. There was no clear correlation observed between the different rounds of the experiment. Due to the pedestrian experimental results sound levels of the surroundings will not be used in further experimentation. An alternative area of enquiry for using sound (in the vehicular experiments) is using microphones to indirectly measure road texture based on the noise from the wheel contact with the road [6]. The paper will also present results of road vehicle experiments. Multiple circuits of the same routes will be compared. Different environments will be assessed including rural, dual carriageways, suburban and urban roads. Sensors to be used include the IMU and 3-axis magnetometer from the pedestrian experiment, a barometer, gas sensors, a microphone, an axle-mounted accelerometer, an ambient light sensor and a thermometer. These will be placed either on, inside or under the vehicle as determined by the individual needs of the sensors. The results will be used to determine which of these sensors could be potentially used for a multisensor integrated navigation system and also the environments in which they work optimally. Using the results of the three feasibility study phases (literature review, pedestrian and road experiment) the next project stage will be to produce a demonstration system that uses the most feasible features of the environment and creates a map database during times GNSS is present. This database will then be used for navigation in times of need. In the long term, it is envisaged that this technique will be implemented cooperatively, with a batch of vehicles collecting feature data and contributing it to a common shared database. / References [1] Thomas, M., et al., Global Navigation Space Systems: Reliance and Vulnerabilities, London, UK: Royal Academy of Engineering, 2011. [2] Jones, K., L. Liu, and F. Alizadeh-Shabdiz, “Improving Wireless Positioning with Look-ahead Map-Matching,” Proc. MobiQuitous 2007, Phildaelphia, PA, February 2008, pp. 1-8. [3] Groves, P.D., Principles of GNSS, Inertial, and Multisensor Intergrated Navigation Systems, Second Edition, Artech House, 2013. [4] Judd, T., and T. Vu, “Use of a New Pedometric Dead Reckoning Module in GPS Denied Environments,” Proc. IEEE/ION PLANS, Monterey, CA, May 2008, pp. 120?128. [5] Walter, D. J., "Feasibility study of novel environmental feature mapping to bridge GNSS outage," Young Navigator Conference, London, 2012. [6] Mircea, M., et al., “Strategic mapping of the ambient noise produced by road traffic, accordingly to European regulations,” Proc. IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj Napoca, Romania, May 2008

    Mass segregation in star clusters is not energy equipartition

    Get PDF
    Mass segregation in star clusters is often thought to indicate the onset of energy equipartition, where the most massive stars impart kinetic energy to the lower-mass stars and brown dwarfs/free floating planets. The predicted net result of this is that the centrally concentrated massive stars should have significantly lower velocities than fast-moving low-mass objects on the periphery of the cluster. We search for energy equipartition in initially spatially and kinematically substructured N-body simulations of star clusters with N = 1500 stars, evolved for 100 Myr. In clusters that show significant mass segregation we find no differences in the proper motions or radial velocities as a function of mass. The kinetic energies of all stars decrease as the clusters relax, but the kinetic energies of the most massive stars do not decrease faster than those of lower-mass stars. These results suggest that dynamical mass segregation -- which is observed in many star clusters -- is not a signature of energy equipartition from two-body relaxation
    corecore