61 research outputs found

    Model prediction of subendocardial perfusion of the coronary circulation in the presence of an epicardial coronary artery stenosis

    Get PDF
    The subendocardium is most vulnerable to ischemia, which is ameliorated by relaxation during diastole and increased coronary pressure. Recent clinical techniques permit the measuring of subendocardial perfusion and it is therefore important to gain insight into how measurements depend on perfusion conditions of the heart. Using data from microsphere experiments a layered model of the myocardial wall was developed. Myocardial perfusion distribution during hyperemia was predicted for different degrees of coronary stenosis and at different levels of Diastolic Time Fraction (DTF). At the reference DTF, perfusion was rather evenly distributed over the layers and the effect of the stenosis was homogenous. However, at shorter or longer DTF, the subendocardium was the first or last to suffer from shortage of perfusion. It is therefore concluded that the possible occurrence of subendocardial ischemia at exercise is underestimated when heart rate is increased and DTF is lower

    Cardiac oxygen supply is compromised during the night in hypertensive patients

    Get PDF
    The enhanced heart rate and blood pressure soon after awaking increases cardiac oxygen demand, and has been associated with the high incidence of acute myocardial infarction in the morning. The behavior of cardiac oxygen supply is unknown. We hypothesized that oxygen supply decreases in the morning and to that purpose investigated cardiac oxygen demand and oxygen supply at night and after awaking. We compared hypertensive to normotensive subjects and furthermore assessed whether pressures measured non-invasively and intra-arterially give similar results. Aortic pressure was reconstructed from 24-h intra-brachial and simultaneously obtained non-invasive finger pressure in 14 hypertensives and 8 normotensives. Supply was assessed by Diastolic Time Fraction (DTF, ratio of diastolic and heart period), demand by Rate-Pressure Product (RPP, systolic pressure times heart rate, HR) and supply/demand ratio by Adia/Asys, with Adia and Asys diastolic and systolic areas under the aortic pressure curve. Hypertensives had lower supply by DTF and higher demand by RPP than normotensives during the night. DTF decreased and RPP increased in both groups after awaking. The DTF of hypertensives decreased less becoming similar to the DTF of normotensives in the morning; the RPP remained higher. Adia/Asys followed the pattern of DTF. Findings from invasively and non-invasively determined pressure were similar. The cardiac oxygen supply/demand ratio in hypertensive patients is lower than in normotensives at night. With a smaller night-day differences, the hypertensives’ risk for cardiovascular events may be more evenly spread over the 24 h. This information can be obtained noninvasively

    Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges

    Get PDF
    BACKGROUND: The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. METHODS: Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC) family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. RESULTS: The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD). The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal pressure partially recovers during re-opening of the vessel in diastole. We have further calculated the wall shear stress (WSS) distributions in addition to the location and length of the flow reversal zones in dependence on the severity of the disease. CONCLUSION: The described boundary layer method can be used to simulate frictional forces and wall shear stresses in the entrance region of vessels. Earlier models are supplemented by the viscous effects in a quasi three-dimensional vessel geometry with a prescribed wall motion. The results indicate that the translesional pressure drop and the mean FFR compares favourably to clinical findings in the literature. We have further shown that the mean FFR under the assumption of Hagen-Poiseuille flow is overestimated in developing flow conditions

    Cross-sectional validation of the Aging Perceptions Questionnaire: a multidimensional instrument for assessing self-perceptions of aging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-perceptions of aging have been implicated as independent predictors of functional disability and mortality in older adults. In spite of this, research on self-perceptions of aging is limited. One reason for this is the absence of adequate measures. Specifically, there is a need to develop a measure that is theoretically-derived, has good psychometric properties, and is multidimensional in nature. The present research seeks to address this need by adopting the Self-Regulation Model as a framework and using it to develop a comprehensive, multi-dimensional instrument for assessing self-perceptions of aging. This study describes the validation of this newly-developed instrument, the Aging Perceptions Questionnaire (APQ).</p> <p>Methods</p> <p>Participants were 2,033 randomly selected community-dwelling older (+65 yrs) Irish adults who completed the APQ alongside measures of physical and psychological health. The APQ assesses self-perceptions of aging along eight distinct domains or subscales; seven of these examine views about own aging, these are: timeline chronic, timeline cyclical, consequences positive, consequences negative, control positive, control negative, and emotional representations; the eighth domain is the identity domain and this examines the experience of health-related changes.</p> <p>Results</p> <p>Mokken scale analysis showed that the majority of items within the views about aging subscales were strongly scalable. Confirmatory factor analysis also indicated that the model provided a good fit for the data. Overall, subscales had good internal reliabilities. Hierarchical linear regression was conducted to investigate the independent contribution of APQ subscales to physical and psychological health and in doing so determine the construct validity of the APQ. Results showed that self-perceptions of aging were independently related to physical and psychological health. Mediation testing also supported a role for self-perceptions of aging as partial mediators in the relationship between indices of physical functioning and physical and psychological health outcomes.</p> <p>Conclusion</p> <p>Findings support the complex and multifaceted nature of the aging experience. The good internal reliability and construct validity of the subscales suggests that the APQ is a promising instrument that can enable a theoretically informed, multidimensional assessment of self-perceptions of aging. The potential role of self-perceptions of aging in facilitating physical and psychological health in later life is also highlighted.</p

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses

    Johnson, Vicki Marie (FA 246)

    Get PDF
    Finding aid and full-text scan of paper (Click on “Additional Files” below) for Folklife Archives Project 246. Paper: Observations at Bowling Green-Warren County Health Department written by Vicki Marie Johnson for a Western Kentucky University folk studies class
    corecore