69 research outputs found

    Activity of the multikinase inhibitor dasatinib against ovarian cancer cells

    Get PDF
    BackgroundHere, we explore the therapeutic potential of dasatinib, a small-molecule inhibitor that targets multiple cytosolic and membrane-bound tyrosine kinases, including members of the Src kinase family, EphA2, and focal adhesion kinase for the treatment of ovarian cancer.MethodsWe examined the effects of dasatinib on proliferation, invasion, apoptosis, cell-cycle arrest, and kinase activity using a panel of 34 established human ovarian cancer cell lines. Molecular markers for response prediction were studied using gene expression profiling. Multiple drug effect/combination index (CI) isobologram analysis was used to study the interactions with chemotherapeutic drugs.ResultsConcentration-dependent anti-proliferative effects of dasatinib were seen in all ovarian cancer cell lines tested, but varied significantly between individual cell lines with up to a 3 log-fold difference in the IC(50) values (IC(50) range: 0.001-11.3 micromol l(-1)). Dasatinib significantly inhibited invasion, and induced cell apoptosis, but less cell-cycle arrest. At a wide range of clinically achievable drug concentrations, additive and synergistic interactions were observed for dasatinib plus carboplatin (mean CI values, range: 0.73-1.11) or paclitaxel (mean CI values, range: 0.76-1.05). In this study, 24 out of 34 (71%) representative ovarian cancer cell lines were highly sensitive to dasatinib, compared with only 8 out of 39 (21%) representative breast cancer cell lines previously reported. Cell lines with high expression of Yes, Lyn, Eph2A, caveolin-1 and 2, moesin, annexin-1, and uPA were particularly sensitive to dasatinib.ConclusionsThese data provide a clear biological rationale to test dasatinib as a single agent or in combination with chemotherapy in patients with ovarian cancer

    Ovarian cancer molecular pathology.

    Full text link
    Peer reviewe

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Repurposing of approved cardiovascular drugs

    Full text link

    Entorhinal Cortex: Antemortem Cortical Thickness and Postmortem Neurofibrillary Tangles and Amyloid Pathology.

    No full text
    Background and purposeThe entorhinal cortex, a critical gateway between the neocortex and hippocampus, is one of the earliest regions affected by Alzheimer disease-associated neurofibrillary tangle pathology. Although our prior work has automatically delineated an MR imaging-based measure of the entorhinal cortex, whether antemortem entorhinal cortex thickness is associated with postmortem tangle burden within the entorhinal cortex is still unknown. Our objective was to evaluate the relationship between antemortem MRI measures of entorhinal cortex thickness and postmortem neuropathological measures.Materials and methodsWe evaluated 50 participants from the Rush Memory and Aging Project with antemortem structural T1-weighted MR imaging and postmortem neuropathologic assessments. Here, we focused on thickness within the entorhinal cortex as anatomically defined by our previously developed MR imaging parcellation system (Desikan-Killiany Atlas in FreeSurfer). Using linear regression, we evaluated the association between entorhinal cortex thickness and tangles and amyloid-ÎČ load within the entorhinal cortex and medial temporal and neocortical regions.ResultsWe found a significant relationship between antemortem entorhinal cortex thickness and entorhinal cortex (P = .006) and medial temporal lobe tangles (P = .002); we found no relationship between entorhinal cortex thickness and entorhinal cortex (P = .09) and medial temporal lobe amyloid-ÎČ (P = .09). We also found a significant association between entorhinal cortex thickness and cortical tangles (P = .003) and amyloid-ÎČ (P = .01). We found no relationship between parahippocampal gyrus thickness and entorhinal cortex (P = .31) and medial temporal lobe tangles (P = .051).ConclusionsOur findings indicate that entorhinal cortex-associated in vivo cortical thinning may represent a marker of postmortem medial temporal and neocortical Alzheimer disease pathology
    • 

    corecore