29 research outputs found

    CSF from Parkinson disease Patients Differentially Affects Cultured Microglia and Astrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive and abnormal accumulation of alpha-synuclein (α-synuclein) is a factor contributing to pathogenic cell death in Parkinson's disease. The purpose of this study, based on earlier observations of Parkinson's disease cerebrospinal fluid (PD-CSF) initiated cell death, was to determine the effects of CSF from PD patients on the functionally different microglia and astrocyte glial cell lines. Microglia cells from human glioblastoma and astrocytes from fetal brain tissue were cultured, grown to confluence, treated with fixed concentrations of PD-CSF, non-PD disease control CSF, or control no-CSF medium, then photographed and fluorescently probed for α-synuclein content by deconvolution fluorescence microscopy. Outcome measures included manually counted cell growth patterns from day 1-8; α-synuclein density and distribution by antibody tagged 3D model stacked deconvoluted fluorescent imaging.</p> <p>Results</p> <p>After PD-CSF treatment, microglia growth was reduced extensively, and a non-confluent pattern with morphological changes developed, that was not evident in disease control CSF and no-CSF treated cultures. Astrocyte growth rates were similarly reduced by exposure to PD-CSF, but morphological changes were not consistently noted. PD-CSF treated microglia showed a significant increase in α-synuclein content by day 4 compared to other treatments (p ≤ 0.02). In microglia only, α-synuclein aggregated and redistributed to peri-nuclear locations.</p> <p>Conclusions</p> <p>Cultured microglia and astrocytes are differentially affected by PD-CSF exposure compared to non-PD-CSF controls. PD-CSF dramatically impacts microglia cell growth, morphology, and α-synuclein deposition compared to astrocytes, supporting the hypothesis of cell specific susceptibility to PD-CSF toxicity.</p

    Global uncertainty in the diagnosis of neurological complications of SARS-CoV-2 infection by both neurologists and non-neurologists: An international inter-observer variability study

    Get PDF
    Introduction: Uniform case definitions are required to ensure harmonised reporting of neurological syndromes associated with SARS-CoV-2. Moreover, it is unclear how clinicians perceive the relative importance of SARS-CoV-2 in neurological syndromes, which risks under- or over-reporting. Methods: We invited clinicians through global networks, including the World Federation of Neurology, to assess ten anonymised vignettes of SARS-CoV-2 neurological syndromes. Using standardised case definitions, clinicians assigned a diagnosis and ranked association with SARS-CoV-2. We compared diagnostic accuracy and assigned association ranks between different settings and specialties and calculated inter-rater agreement for case definitions as “poor” (κ ≤ 0.4), “moderate” or “good” (κ > 0.6). Results: 1265 diagnoses were assigned by 146 participants from 45 countries on six continents. The highest correct proportion were cerebral venous sinus thrombosis (CVST, 95.8%), Guillain-Barré syndrome (GBS, 92.4%) and headache (91.6%) and the lowest encephalitis (72.8%), psychosis (53.8%) and encephalopathy (43.2%). Diagnostic accuracy was similar between neurologists and non-neurologists (median score 8 vs. 7/10, p = 0.1). Good inter-rater agreement was observed for five diagnoses: cranial neuropathy, headache, myelitis, CVST, and GBS and poor agreement for encephalopathy. In 13% of vignettes, clinicians incorrectly assigned lowest association ranks, regardless of setting and specialty. Conclusion: The case definitions can help with reporting of neurological complications of SARS-CoV-2, also in settings with few neurologists. However, encephalopathy, encephalitis, and psychosis were often misdiagnosed, and clinicians underestimated the association with SARS-CoV-2. Future work should refine the case definitions and provide training if global reporting of neurological syndromes associated with SARS-CoV-2 is to be robust

    The cerebrospinal fluid proteome in HIV infection: change associated with disease severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment.</p> <p>Results</p> <p>After establishing an <it>accurate mass and time </it>(AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91 CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral therapy and correlated abundances of identified proteins a) within and between subjects, b) with all other proteins across the entire sample set, and c) with "external" CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson's) ≤ -0.3 and ≥0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node.</p> <p>Conclusions</p> <p>Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases.</p

    Position‐Related Paroxysmal Facial Twitching

    No full text
    corecore