37 research outputs found

    Rapid Tooling Method for Soft Customized Removable Oral Appliances

    Get PDF
    Traditionally oral appliances i.e. removable orthodontic appliances, bite splints and snoring / sleep apnea appliances are made with alginate impressions and wax registrations. Our aim was to describe the process of manufacturing customized oral appliances with a new technique i.e. rapid tooling method. The appliance should ideally be custom made to match the teeth. An orthodontic patient, scheduled for conventional orthodontic treatment, served as a study subject. After a precise clinical and radiographic examination, the approach was to digitize the patient’s dental arches and then to correct them virtually by computer. Additive manufacturing was then used to fabricate a mould for a soft customized appliance. The mould was manufactured using stereolithography from Somos ProtoGen O-XT 18420 material. Casting material for the mould to obtain the final appliance was silicone. As a result we managed to create a customized soft orthodontic appliance. Also, the accuracy of the method was found to be adequate. Two versions of the described device were manufactured: one with small and one with moderate orthodontic force. The study person also gave information on the subjective patient adaptation aspects of the oral appliance

    The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts

    Full text link
    Establishing and maintaining mature bone at the bone-device interface is critical to the long-term success of prosthesis. Poor cell adhesion to orthopaedic and dental implants results in implant failure. Considerable effort has been devoted to alter the surface characteristics of these biomaterials in order to improve the initial interlocking of the device and skeleton. We investigated the effect of surface chemistry modification of titanium alloy (Ti-6Al-4V) with zinc, magnesium or alkoxide-derived hydroxy carbonate apatite (CHAP) on the regulation of key intracellular signalling proteins in human bone-derived cells (HBDC) cultured on these modified Ti-6Al-4V surfaces. Western blotting demonstrated that modifying Ti-6Al-4V with CHAP or Mg results in modulation of key intracellular signalling proteins. We showed an enhanced activation of Shc, a common point of integration between integrins and the Ras/Mapkinase pathway. Mapkinase pathway was also upregulated, suggesting its role in mediating osteoblastic cell interactions with biomaterials. The signalling pathway involving c-fos (member of the activated protein-1) was also shown to be upregulated in osteoblasts cultured on the Mg and CHAP modified Ti-6Al-4V. Thus surface modification with CHAP or Mg may contribute to successful osteoblast function and differentiation at the skeletal tissue-device interface. © 2005 Elsevier Ltd. All rights reserved
    corecore