41 research outputs found
Recommended from our members
Design and characterisation of a non-contact flexible sensor array for electric potential imaging applications
Capacitive non-contact imaging of electric fields and potentials with micro-metre resolution can provide relevant insights into material characterisation, structural analysis, electrostatic charge imaging and bio-sensing applications. However, scanning electric potential microscopes have been confined to rigid and single-probe devices, making them slow, prone to mechanical damage and complex to fabricate. In this work, we present the design and characterisation of a novel 5-element flexible array of electric potential probes with spatial resolution down to 20μm to speed up the scanning time. This was achieved by combining flexible thin-film probes for active guarding and shielding with state-of-the art discrete conditioning circuits. The potential of this approach is showcased by using the fabricated array to image latent fingerprints deposited on an insulating surface by contact electrification, obtain the surface topography of conductive samples and to visualise local dielectric variations
Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well
A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s). We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants (N = 251 samples). The plastid markers comprise portions of five coding (rpoB, rpoC1, rbcL, matK and 23S rDNA) and three non-coding (trnH-psbA, atpF–atpH, and psbK–psbI) loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA) to 59% (trnH-psbA) of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85–100% for plastid loci), with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs). Several loci (matK, psbK–psbI, trnH-psbA) were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69–71%; values that were approached by several two- and three-region combinations). This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the contentious debate on plant barcoding should therefore involve increased attention to practical issues related to the ease of sequence recovery, global alignability, and marker redundancy in multilocus plant DNA barcoding systems
First report on dung beetles in intra-Amazonian savannahs in Roraima, Brazil
This is the first study to address the dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in intra-Amazonian savannahs in the state of Roraima, Brazil. Our aim was to survey the dung beetle fauna associated with these savannahs (regionally called 'lavrado'), since little is known about the dung beetles from this environment. We conducted three field samples using pitfall traps baited with human dung in savannah areas near the city of Boa Vista during the rainy seasons of 1996, 1997, and 2008. We collected 383 individuals from ten species, wherein six have no previous record in intra-Amazonian savannahs. The most abundant species were Ontherus appendiculatus (Mannerheim, 1829), Canthidium aff. humerale (Germar, 1813), Dichotomius nisus (Olivier, 1789), and Pseudocanthon aff. xanthurus (Blanchard, 1846). We believe that knowing the dung beetles diversity associated with the intra-Amazonian savannahs is ideal for understanding the occurrence and distribution of these organisms in a highly threatened environment, it thus being the first step towards conservation strategy development
Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut
BACKGROUND:The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the "abominable mysteries" of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. METHODOLOGY/PRINCIPAL FINDINGS:We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. CONCLUSIONS/SIGNIFICANCE:This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative markers for investigating the phylogenetic relationships of the palm family
Development of Electric Field Nmr Signal Acquisition System
An entirely new approach to signal acquisition in nuclear magnetic resonance (NMR) systems has recently been demonstrated experimentally at Sussex. We report results which bring this method closer to realising some significant advantages over the conventional approach. The method uses a novel sensor technology, the electric potential sensor, to detect the electric field signal associated with the precessing nuclear spins. It provides an alternative non-inductive method for acquiring the signal via a weak capacitive coupling to the sample. This paper builds on previously published results and demonstrates the ability to detect spin-echo signals from liquid samples as well as free induction decays from solid samples using this technique. In addition, we demonstrate the intrinsic spatial resolution of the method by using a measurement electrodes with a range of sizes from 180 to 0.2 mm2, corresponding to coupling capacitance of 1 pF to 1 fF. Conclusions are drawn as to some of the likely application areas for this signal acquisition techniqu